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Preface

At the end of 2006 I posted on my website a short article entitled Eureka! Info-Gap is Worst
Case Analysis (Maximin) in Disguise! where I set out a formal, rigorous proof that info-gap’s
robust-satisficing decision model is a (Wald) maximin model1. Since then I outlined similar
formal proofs in other articles, including peer-reviewed articles, and I posted on my website a
wealth of material supplementing this fact2.

Over the years I repeatedly called the attention of many info-gap scholars, including Prof.
Yakov Ben-Haim, the Father of info-gap decision theory, to the misleading rhetoric in the info-
gap literature concerning the maximin connection. Regrettably, the misconceptions about this
connection continue to be promulgated in the professional literature, including peer-reviewed
journals such as Risk Analysis, whose referees should know better.

They should know better because this matter is as good as self-evident. Namely, it can be
settled by inspection. For the question is this: is the model on the right hand-side an instance
of the model on the left hand-side?

Prototype Maximin model Info-gap’s robust-satisficing decision model

max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s),∀s ∈ S(y)} max
q∈Q,α≥0

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)} (1)

where con(y, s) denotes a list of constraints on the (y, s) pairs.

The rhetoric in the info-gap literature on this issue has it that the two models “are different”.
For, consider this:

These two concepts of robustness—min-max and info-gap—are different, motivated by
different information available to the analyst. The min-max concept responds to severe

∗This article was written for the Risk Analysis 101 Project to provide a Second Opinion on pronouncements
on the relationship between Wald’s maximin paradigm and info-gap’s robust-satisficing approach to decision
making under severe uncertainty, published recently in Risk Analysis. See Risk-Analysis-101.moshe-online.com.

1See http://www.moshe-online.com/maximin/proof a.pdf
2See http://info-gap.moshe-online.com
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uncertainty that nonetheless can be bounded. The info-gap concept responds to severe un-
certainty that is unbounded or whose bound is unknown. It is not surprising that min-max
and info-gap robustness analyses sometimes agree on their policy recommendations, and
sometimes disagree, as has been discussed elsewhere.(40)

Ben-Haim (2012, p. 7)

where reference [40] is Ben-Haim et al. (2009).
The implication therefore must be that, Risk Analysis referees are apparently of the opinion

that the following model, where R denotes the real line, namely R := (−∞,∞), is not a minimax
model:

z∗ := min
x∈R

max
y∈R
{x2 + 2xy − y2}. (2)

Or, could it be that these referees hold that, insofar as Risk Analysis is concerned, the
interval (−∞,∞) is bounded !!

One wonders . . .

The incontestable fact obviously is that the above model is a perfectly kosher minimax
model and the real line R remains unbounded.

The conclusion therefore must be that Risk Analysis referees are unaware of the fact that
info-gap’s robustness model and info-gap’s robust-satisficing decision model are both maximin
models. Specifically, they are unaware that these models are rather simple instances of the
following prototype maximin model3:

z◦ := max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s), ∀s ∈ S(y)}. (3)

Or, if you will, these models are simple instances of the following “textbook” maximin model:

z′ := max
y∈Y

min
s∈S(y)

g(y, s). (4)

This being so, the implication therefore is that Risk Analysis referees second the absurd
proposition that a simple instance of a prototype model is capable of representing situations
that the prototype itself cannot represent. Namely, Risk Analysis referees accept the astounding
proposition that while maximin models cannot handle unbounded uncertainty spaces, info-gap’s
robustness model indeed can!

Again, one wonders . . .

It is important to take note that claims that info-gap’s robust-satisficing decision model is
not a maximin model are based on a comparison of these two models:

Maximin model Info-gap’s robust-satisficing decision model

max
q∈Q

min
u∈U(α′,ũ)

r(q, u) max
q∈Q,α≥0

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)} (5)

where α′ is a given value of α.
But the point to note here is that this is a non sequitur par excellence. That is, the fact

that the model on the left hand-side of (5) is dissimilar from the model on the right hand-side
of (5) does not imply that the latter is not a maximin model.

Indeed, it is elementary to show that info-gap’s robust-satisficing decision model is a max-
imin model. It is therefore mind boggling that info-gap scholars who base their claims on the
comparison shown in (5), do not bother to consider the following comparison:

Maximin model Robust-satisficing decision model

max
q∈Q,α≥0

min
u∈U(α,ũ)

{h(q, α, u) : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} max
q∈Q,α≥0

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)} (6)

3Here con(y, s) denotes a list of constraints on the (y, s) pairs.
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Because, the fact that info-gap’s robust-satisficing decision model is an instance of the
maximin model shown in (6) simply stares one in the face!

So, again, one wonders . . .

This state of affairs raises a number of questions. For instance, consider these two:

· Considering how easy it is to show/prove/verify that info-gap’s robustness model and
info-gap’s robust-satisficing decision model are both maximin models, on what grounds
do info-gap scholars claim, and Risk Analysis referees apparently concur, that these
models are not maximin models?

· Why is it important to be clear on the fact that info-gap’s robustness model and
info-gap’s robust-satisficing decision model are simple maximin models?

I take up the first question in the sequel. At this stage I address only the second question
whose answer is in four parts:

· Info-gap decision theory is being proclaimed a new theory that is radically different from
all current theories on decision under uncertainty. So, showing that its two core models
are in fact simple instances of the most famous non-probabilistic robustness model used
is the broad area of decision making, risk analysis etc., demonstrates how groundless this
claim is. But more importantly, this fact raises serious questions about the narrative in
the info-gap literature on Wald’s maximin model, worst-case analysis, control theory, and
so on. In short, this fact calls into question statements made in the info-gap decision
theory about classic decision theory (Luce and Raiffa 1957, Resnik 1987, French 1988)
and robust optimization (Gupta and Rosenhead 1968, Rosenhead et al. 1972, Mulvey et
al. 1995, Bai et al. 1997, Kouvelis and Yu 1997, Ben-Tal and Nemirovski 1999, 2002,
Bertsimas and Sim 2004, Ben-Tal et al. 2006, Ben-Tal et. al 2009, Bertsimas et al. 2011,
Gabrel et al. 2012). It is important that readers of info-gap publications take this fact
into account!

· The info-gap literature is saturated with misleading pronouncements on Wald’s maximin
paradigm and its many variant models: on its capabilities and limitations and its relation
to info-gap’s robustness model and info-gap’s robust-satisficing decision model. It is
regrettable that such pronouncements have found their way into peer-reviewed journals,
such as Risk Analysis. It is important therefore to dispense with the fallacies about Wald’s
maximin paradigm that continue to be disseminated by peer-reviewed journals such as
Risk Analysis.

· It is important that readers take special note of the following facts. Articles, such as
Ben-Haim (2012), denying that info-gap’s robust-satisficing decision model is a maximin
model, and articles such as Schwartz et al. (2010), seeking to promote info-gap’s robust-
satisficing approach as a new normative standard of rational decision making, are engaged
in a blatant misrepresentation of the state of the art in the broad area of decision making
especially of the field of robust optimization.

· Indeed, in spite of the fact that both info-gap’s robust-satisficing decision model and info-
gap’s robustness model are simple robust optimization models, not a single reference can
be found to robust optimization in these two articles, nor in the three books on info-gap
decision theory (Ben-Haim 2001, 2006, 2010). In fact, it would seem that every effort is
made to avoid any discussion on robust optimization, and this in spite of the fact that the
robust-satisficing approach advocated by info-gap decision theory is a simplistic, indeed,
naive robust optimization approach.

It is important that referees of journals such as Risk Analysis be aware of these facts and
their implications.
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A close examination of info-gap’s misleading rhetoric on the maximin connection reveals
that info-gap scholars, and by implication Risk Analysis referees, have serious misconceptions
about the following:

· The difference between local and global worst-case analysis.

· The difference between local and global robustness.

· The difference between robustness with respects to payoffs and robustness with respect
to constraints.

· The relation between a prototype model and its instances.

These misconceptions are merely touched on in this article, for its main objective is to
introduce referees of journals, such as Risk Analysis, to the rhetoric in the info-gap literature
on the relationship between this theory and Wald’s maximin paradigm.

The rhetoric in the info-gap literature surrounding the profound incongruity between the
severity of the uncertainty postulated by info-gap decision theory, and the model of local ro-
bustness that the theory deploys for the management of this uncertainty, will be discussed in a
separate article entitled Rhetoric in risk analysis, Part II: Anatomy of a Peer-reviewed Voodoo
Decision Theory.

Melbourne Moshe
Australia, The Land of the Black Swan ,
July 6, 2013
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1 Introduction

One can certainly argue intelligently about certain aspects of the relationship between Wald’s
maximin paradigm (Wald 1939, 1945, 1950; Luce and Raiffa 1957, Resnik 1987, French 1988)
and info-gap decision theory (Ben-Haim 2001, 2006, 2010). For instance, it most certainly
makes a lot of sense to ask whether info-gap’s robustness model is a very simple maximin
model or just a simple maximin model. Or, whether Wald’s maximin decision rule is much
more general and powerful than info-gap’s robust-satisficing decision rule, or just more general
and powerful. And, it most certainly makes sense to ask which maximin model is best suited
for explaining why info-gap’s robustness model and info-gap’s robust-satisficing decision model
are maximin models.

But no amount of rhetoric can change the following easily proved and demonstrated fact
about the essence of this relationship:

Fact 1.1 Both info-gap’s robustness model and info-gap’s robust-satisficing decision model are
maximin models.

Recall that info-gap decision theory (Ben-Haim 2001, 2006, 2010) is based on the following
two core models. The first defines the robustness of decision q ∈ Q, the second determines the
robustness of the most robust decision:

Info-gap’s robustness model:

α̂(q, rc) := max
α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} , q ∈ Q (7)

Info-gap’s robust-satisficing decision model:

α̂(rc) := max
q∈Q,α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} (8)

where

Q = set of available decisions.

U = set of all possible/plausible values of parameter u.

ũ = point estimate of the true (unknown) value of the parameter of interest u.

U(α, ũ) = neighborhood of size α around ũ.

r(q, u) = performance level of decision q given u.

rc = critical performance level.

Now, maximin models come in a variety of forms. Still, all maximin models have a basic
characteristic in common. Namely, all are transliterations of the following “rule”:

The maximin rule tells us to rank alternatives by their worst possible outcomes: we
are to adopt the alternative the worst outcome of which is superior to the worst
outcome of the others.

Rawls (1971, p. 152)

In other words, any transliteration of this Rule into a well-defined (not necessarily mathe-
matical) model is a maximin model. And out of the numerous prototype maximin models that
are relevant to this discussion, we shall focus on the following:

Maximin model:

z∗ := max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s), ∀s ∈ S(y)} (9)

where

Y = set of available alternatives.
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S = set of all possible/plausible of state s.

S(y) = set of states associated with alternative y.

f(y, s) = payoff associated with the (y, s) pair.

con(y, s) = list of constraints on the (y, s) pairs4.

The characteristic that makes this model a maximin model is then that each alternative
y ∈ Y is assessed according to its worst outcome and the best alternative is that whose worst
outcome is best. The “worst-case” orientation of this model is manifested in:

· The iconic expression min
s∈S(y)

that represents worst-case analysis with respect to the payoff

f(y, s).

· The iconic expression ∀s ∈ S(y) that represents a worst-case requirement with respect to
the constraints con(y, s).

I should point out that Fact 1.1 is an immediate implication of the following:

Fact 1.2 Both info-gap’s robustness model (7) and info-gap’s robust-satisficing decision model
(8) are simple, transparent instances of the prototype maximin model specified in (9).

For the purposes of this discussion it suffices to point out that an instance of a prototype
model is a model obtained by instantiating, namely specifying, one or more of the unspecified
parameters of the prototype model. Therefore, the instances of a prototype model belong to
the same class/family of models that the prototype represents. Think about a prototype model
as a set containing models that share certain common properties. Each member of this set is
an instance of the prototype.

Thus, the expression 3x + b is an instance of the expression ax + b, where a and b are
unspecified parameters. Similarly, an instance of a polynomial is a polynomial; an instance of
the quadratic equation ax2 + bx + c = 0 where a > 0, b and c are parameters, is a quadratic
equation; an instance of a linear programming model is a linear programming model, and so
on5.

In particular, an instance of the prototype maximin model (9) is a model that is ob-
tained by specifying one or more of the objects/constructs comprising this model. These ob-
jects/constructs are: the set Y , the sets S(y), y ∈ Y , the objective function f = f(y, s) and the
list of constraints con(y, s). For example, the instance specified by Y ← R, S(y)← R,∀y ∈ Y ,
and by an empty list of constraints (con(y, s)), yields the following maximin model:

max
y∈R

min
s∈R

f(y, s). (10)

Now, the argument that info-gap scholars are in the habit of making to purport that info-
gap’s robust-satisficing decision model is not a maximin model maintains the obvious. Namely,
that info-gap’s robust-satisficing decision model (8) is different from the following maximin
model:

max
q∈Q

min
u∈U(α,ũ)

r(q, u) , (for some given value of α). (11)

In other words, the argument goes like this: given that (11) is a maximin model and that
(8) is so different from (11), how can (8) possibly be a maximin model?!

But, to see that this argument proves nothing, observe that although the model in (11) is
quite different from the model in (9), both models are perfectly kosher maximin models, and
so is (2).

4For convenience, assume that in the definition/construction of set Y , there are constraints only on y, and in
that of the sets S(y), y ∈ Y , there are constraints only on s (for a given value of y).

5The values assigned to the parameters that specify an instance of a model must, of course, comply with
restrictions imposed on these parameters by the prototype (parent) model.
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By analogy, the fact that p(x) := a+ bx+ cx2 + dx3 is a polynomial and that q(x) := 1−x2
is different from p(x) does not imply that q(x) is not a polynomial. Nor does it imply that q is
not an instance of p.

So it is important to remind info-gap scholars and Risk Analysis referees of the following
fact of life:

Fact 1.3 The fact that a model, say Model A, is “different” from a given maximin model, e.g.
the model defined in (11), does not imply that Model A is not a maximin model. Nor does it
imply that Model A is not an instance of the given maximin model.

The bottom line is then this:

Fact 1.4 Any instance of a prototype maximin model is a maximin model. Thus, any instance
of (9) is a maximin model.

No amount of rhetoric can change these basic facts.

2 A simple Theorem

Consider the two instances of the prototype maximin model (9) whose specifications are shown
in Figure 1. Note that the only difference between these two instances is in the specification of
y and Y .

Instance I

y ← α (12)

Y ← [0,∞) (13)

s← u (14)

S← U (15)

S(y)← U(α, ũ) (16)

f(y, s)← α (17)

con(y, s)← rc ≤ r(q, u) (18)

Instance II

y ← (q, α) (19)

Y ← Q× [0,∞) (20)

s← u (21)

S← U (22)

S(y)← U(α, ũ) (23)

f(y, s)← α (24)

con(y, s)← rc ≤ r(q, u) (25)

Figure 1: Specifications of two instances of the maximin model defined in (9)

Theorem 2.1 Both info-gap’s robustness model (7) and info-gap’s robust-satisficing decision
model (8) are maximin models. More specifically, info-gap’s robustness model is the instance of
(9) specified by Instance I, and info-gap’s robust-satisficing model is the instance of (9) specified
by Instance II.

Proof. All we have to do is to instantiate the maximin model given in (9) according to the
two specifications. For Instance I we obtain

z∗ : = max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s), ∀s ∈ S(y)} (26)

= max
α≥0

min
u∈U(α,ũ)

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)} (27)

= max
α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)}. (28)
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Hence, info-gap’s robustness model (7) is an instance of the maximin model defined by (9).
And for Instance II we obtain

z∗ : = max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s), ∀s ∈ S(y)} (29)

= max
q∈Q,α≥0

min
u∈U(α,ũ)

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)} (30)

= max
q∈Q,α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} (31)

Hence, info-gap’s robust-satisficing decision model (8) is also an instance of the maximin
model defined by (9). QED

No amount of rhetoric can change this fact.

3 Maximin games

It is convenient and instructive to think about maximin models as two-players games featuring
the decision maker (DM), who controls the value of the alternative (y ∈ Y ) and Nature, who
controls the value of the state (s ∈ S) variable. It is assumed that the DM plays first and that
her objective is to obtain the best possible outcome. Nature plays second, knowing what value
of y was selected by the DM. Nature’s objective is to make sure that the DM attains the worst
possible outcome associated with the alternative chosen by the DM.

Symbolically, such games can be formulated as follows:

v := best
y∈Y

worst
s∈S(y)

O(y, s) (32)

where S(y) denotes the set of states associated with alternative y and O(y, s) represents the
outcome generated by the pair (y, s). The best

y∈Y
and worst

s∈S(t)
operations are based on a suitable

preference order over the set of possible/plausible outcomes {O(y, s) : y ∈ Y, s ∈ S(y)}.
In the classic case, where the outcomes are real-numbers (O(y, s) = f(y, s)) representing

payoffs, and the preference relation is the conventional “the larger the better” rule, this maximin
model yields the following “textbook” prototype maximin model:

v := max
y∈Y

min
s∈S(y)

f(y, s). (33)

The iconic expression min
s∈S(y)

represents worst-case robustness with respect to the payoff

f(y, s).
Now, suppose that the alternatives y ∈ Y are required to satisfy constraints that depend on

the state variable s ∈ S. Let then

con(y, s) = list of constraints on the (y, s) ∈ Y × S pairs. (34)

An outcome in this case must therefore represent how “good” the pair (y, s) is with respect
to the payoff f(y, s) it generates and whether or not this pair satisfies the constraints con(y, s).
So, let such an outcome be represented by a pair O(y, s) = (c, p) where p represents the payoff
f(y, s) and c represents the status of the constraints con(y, s):

c =

{
+ , the constraints con(y, s) are satisfied

− , the constraints con(y, s) are violated
(35)

For instance, the outcome O(y, s′) = (+, 45) indicates that the pair (y, s′) satisfies the
constraints and generates a payoff of $45, whereas the outcome O(y, s′′) = (−, 90) indicates
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that the pair (y, s′′) violates the constraints, but would have otherwise generated a payoff of
$90 (what a pity!).

As is invariably the case in constrained optimization, lexicographic priority is given to con-
straint satisfaction: an optimal solution must be a feasible solution, hence infeasible solutions,
that is solutions that violate the constraints, are discarded at the outset.

So from the decision maker’s point of view, violation of the constraints con(y, s) should be
avoided. Hence, for example, the decision maker would prefer the outcome (+,−3000) to the
outcome (−, 900000), even though she would greatly prefer a payoff of $900000 to a payoff (loss)
of −$3000. More generally, the decision maker would prefer an outcome (+, A) to an outcome
(−, B) regardless of the values of the payoffs A and B.

This means that, with no loss of generality, the decision maker can ignore any alternative
y ∈ Y such that O(y, s) = (−, C) for some s ∈ S(y). Differently put, the decision maker can

restrict the choice of y ∈ Y to alternatives that satisfy the constraints for all the values of s
associated with them. In this case, the preference among these alternatives can be based on
the good old “larger is better” preference order over the payoffs f(y, s), s ∈ S(y).

The lexicographic preference order outlined above can be captured by a modified payoff
function, F = F (y, s), defined as follows:

F (y, s) :=

{
f(y, s) , pair (y, s) satisfies the constraints con(y, s)

−∞ , pair (y, s) violates the constraints con(y, s)
, y ∈ Y, s ∈ S(y). (36)

This yields the prototype maximin model

v = max
y∈Y

min
s∈S(y)

F (y, s). (37)

The large penalty (−∞) for violating the constraints con(y, s) deters the decision maker from
selecting any alternative y ∈ Y that violates the worst-case robustness constraint con(y, s), ∀s ∈
S(y). Hence, this “textbook” prototype maximin model is equivalent to a maximin model where
the outcomes are specified by f(y, s) and the (y, s) pairs are subject to the worst-case robustness
constraint con(y, s),∀s ∈ S(y).

In short, incorporating the constraints con(y, s) in the maximin game yields the following
maximin representation of the game:

v := max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s),∀s ∈ S(y)}. (38)

Last but not least, in simpler cases where the payoffs f(y, s), y ∈ Y, s ∈ S(y) do not depend
on s, namely in cases where f(y, s) = h(y) for some real-valued function h, the prototype
maximin model of the game is as follows:

v := max
y∈Y

{h(y) : con(y, s), ∀s ∈ S(y)}. (39)

The absence of the iconic expression min
s∈S(y)

from this formulation, gives notice that this

prototype maximin model does not seek worst-case robustness with respect to the payoffs
because the payoff f(y, s) = h(y) is independent of the state variable s.

Note that in the context of such models the outcome associated with a (y, s) pair is equal to
either (+, h(y)) or (−, h(y)), depending on whether the pair satisfies the constraints con(y, s).
Therefore, the existence of a worst outcome (for each alternative y) is a non-issue: there
always is at least one worst outcome:

· If the constraints con(y, s) are satisfied for all s in S(y), then all the elements of S(y) are
worst cases of u and the worst outcome is equal to (+, h(y)).

· If the constraints con(y, s) are not satisfied for all s in S(y), then all the elements of
S(y) that violate these constraints are worst cases of u and the worst outcome is equal to
(−, h(y)).
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In short: in the case of maximin models of the type specified in (39), the worst outcome
associated with alternative y is equal to either (+, h(y)) or (−, h(y)). Meaning that one is a
priori assured of the existence of a worst case.

Thus, to turn the tables on the misleading info-gap rhetoric, exemplified for instance in the
statement quoted above from Ben-Haim (2012), it is important to be clear on the facts of the
matter.

The info-gap rhetoric has it that in contrast to a maximin analysis, where the existence of
a worst case is an issue, in info-gap decision theory a worst outcome does not enter into the
analysis and therefore the uncertainty space can be unbounded. Hence, an info-gap analysis is
not a worst case analysis, hence it is not a Maximin analysis.

The fact of the matter is of course that the existence of worst outcomes is never an issue in
the case of maximin models of the type specified by (39) because one is assured that a worst case
exists as a matter of principle in the framework of such models. Hence, given that info-gap’s
robustness model and info-gap’s robust-satisficing model are instances of (39), it follows that
the existence of worst outcomes is not an issue in info-gap robustness games either. But, this
is so for reasons that are totally different from those given by the info-gap rhetoric.

Info-gap robustness game

Let us now examine how the maximin game is manifested in the context of info-gap’s robustness
model, namely the model:

α̂(q, rc) := max
α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} , q ∈ Q. (40)

Note that here q is fixed and given, and so are ũ and rc.
In this model the decision maker controls the value of α and Nature controls the value of u,

hence α represents an “alternative”, and u represents a “state”. For a given choice of α by the
decision maker, Nature selects the worst u in U(α, ũ) with respect to the constraint rc ≤ r(q, u).

The worst u in U(α, ũ) is determined as follows:

· If there is a u in U(α, ũ) such that rc > r(q, u), then any such u is a worst case. The
worst outcome is (−, α), observing that the − indicates that the performance constraint
rc ≤ r(q, u) is violated somewhere on U(α, ũ).

· If rc ≤ r(q, u),∀u ∈ U(α, ũ), then any u in U(α, ũ) is a worst case (and a best case), and
the worst outcome is (+, α).

The constraint rc ≤ r(q, u) in the info-gap’s robustness model (40) discards all the inadmis-
sible values of α, namely values of α for which the outcome is (−, α).

This is illustrated graphically in Figure 2, where the uncertainty space is represented by the
large rectangle, the neighborhoods U(α, ũ), α ≥ 0 are represented by circles of radius α around
ũ, and the set of acceptable values of u is represented by the shaded area.

The worst values of u associated with the choice of alternative α = α′ are represented by
the white area in the neighborhood U(α′, ũ). The set of all the worst values of u associated
with the choice of alternative α = α′′ comprises the entire neighborhood U(α′′, ũ).

The info-gap robustness of decision q, denoted α̂(q, rc), is equal to the radius of the largest
circle contained in the shaded area. This is equal to the best (with respect to alternative
α) worst (with respect to u ∈ U(α, ũ)) payoff (α) subject to the local robustness constraint
rc ≤ r(q, u), ∀u ∈ U(α, ũ).

4 Maximin formulations for all occasions

As I pointed out already, maximin models come in a variety of forms. This means that the
maximin paradigm puts at our disposal an extremely pliable tool for the purpose of conducting
worst-case robustness analyses. For, recall Rawls’ (1971) formulation of the Maximin Rule
stated above, and the following slightly modified versions thereof:
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ũ

rc ≤ r(q, u)

Acceptable values of u

U
na
cc
ep
ta
bl
e

va
lu
es
of
u

r c
>
r(
q,
u)

U

U(α̂(q, rc), ũ)
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Figure 2: Info-gap’s robustness game: α̂(q, rc) := max
α≥0

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)}
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· Maximin Rule:
Rank alternatives by their worst outcomes, hence select the alternative the worst outcome
of which is at least as good as the worst outcome of the others.

The question is then how do we put this idea to work? This is precisely where the crucial
issue of modeling the Maximin Rule comes into play. Modeling the Maximin Rule implies giving
the key concepts “alternative”, “outcome”, “worst”, and “best” determinate meaning, giving
them precise definitions and structure. And to illustrate this important point, we distinguish
between the following three prototype maximin models6:

Full Monty maximin model:

max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s),∀s ∈ S(y)} (41)

Classic maximin model:

max
y∈Y

min
s∈S(y)

f(y, s) (42)

MP maximin model:

max
y∈Y

{f(y) : con(y, s), ∀s ∈ S(y)} (43)

As explained above, the distinction between the three models is due to the object(s) driving
the robustness analysis, the objects being the objective function, f , and the constraints, con:

· The Full Monty model seeks robustness with respect to both the objective function and
the constraints.

· The Classic model seeks robustness only with respect to the objective function.

· The MP model seeks robustness only with respect to the constraints.

Obviously, the Classic and MP models are simple instances of the Full Monty model. What
is not so obvious apparently, is that these three models are in fact equivalent in the sense that
each model yields the other two as instances. For instance, to show that the seemingly rather
anemic MP model is actually as versatile as the impressive Full Monty model, consider the
following MP maximin model:

max
x∈X,v∈R

{v : v ≤ f(x, s), con(x, s), ∀s ∈ S(x)}. (44)

Also, note that7

min
z∈Z

h(z) ≡ max
v∈R
{v : v ≤ h(z),∀z ∈ Z}. (45)

We thus have,

max
x∈X,v∈R

{v : v ≤ f(x, s), con(x, s), ∀s ∈ S(x)}

≡ max
x∈X

max
v∈R
{v : v ≤ f(x, s), con(x, s),∀s ∈ S(x)} (46)

≡ max
x∈X

min
s∈S(x)

{f(x, s) : con(x, s), ∀s ∈ S(x)}. (47)

This means that instances of the prototype Full Monty maximin model can be formulated
as MP maximin models, and vice versa.

All this goes to show that analysts have at their disposal a wide range of maximin models
to chose from. Hence, when it comes to formulating a given maximin problem, analysts can

6MP ≡ Mathematical Programming
7This modeling trick is used extensively in game theory, operations research and robust optimization (e.g.

Ecker and Kupferschmid 1988, pp. 24-25; Kouvelis and Yu, 1997, p. 27).
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use any one of these three prototype maximin models, depending on the problem they seek to
solve and on their objectives.

Now, in view of what we have seen so far, it is clear that the most obvious way to relate
info-gap’s robust-satisficing decision model and info-gap’s robustness model to the maximin
model is through the prototype MP maximin model. Indeed, a simple “visual” comparison
immediately shows that info-gap’s robust-satisficing decision model and info-gap’s robustness
model are simple instances of the prototype MP maximin model. For instance, consider this:

MP maximin model Info-gap’s robust-satisficing decision model

max
y∈Y

{f(y) : con(y, s),∀s ∈ S(y)} max
q∈Q,α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} (48)

You don’t have to be a risk analyst to figure out, indeed this is obvious by inspection, that
the model on the right hand-side is an instance of the model on the left hand-side.

And yet, info-gap scholars maintain that info-gap’s robust-satisficing decision model and
info-gap’s robustness model are not maximin models.

The question of course is: how is this possible?

An examination of the info-gap literature reveals that, for reasons never made clear,
indeed never given the slightest justification anywhere in this literature, the claims
denying that info-gap’s robust-satisficing decision model and info-gap’s robustness model are
maximin models are based on comparisons such as this:

Maximin model Info-gap’s robust-satisficing decision model

max
q∈Q

min
u∈U(α′,ũ)

r(q, u) max
q∈Q,α≥0

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)} (49)

where α′ is a given value of α.
The argument is that the fact that these two models are dissimilar proves that info-gap’s

robust-satisficing decision model and info-gap’s robustness model are not maximin models.
But, as I noted above, this is a non sequitur par excellence. The fact that in (49) the

model on the left hand-side and the model on the right hand-side have different formulations and
yield different results does not imply that the model on the right hand-side is not a maximin
model. All that this comparison indicates is that . . . the two models which are different (i.e. are
different instances of the prototype (9)) typically yield different results. The important point
is that, a quick look at (48) suffices to see at a glance that info-gap’s robust-satisficing decision
model and info-gap’s robustness model are indeed maximin models.

Why info-gap scholars base their claims concerning the info-gap maximin connection on the
comparison shown in (49) and not say, on a comparison shown in (48) is anybody’s guess.

My main point is that arguing along these lines is totally equivalent to seeking to settle
whether “function p defined by p(x) = 1 + x2 − x6 is a polynomial” by comparing it to some
degree 5 polynomial, say P (x) = 1 + ax+ bx2 − cx5, and concluding that because p is different
from P , then p is not a polynomial!

Go figure!

5 The Instance that Roared

One of the absurdities advanced in the info-gap literature (e.g. Ben-Haim 2012, p. 7), in an
effort to disassociate info-gap’s robust-satisficing decision model from the maximin model, is
that info-gap’s robust-satisficing decision model (8) can handle a severe uncertainty that is
beyond the capabilities of maximin models. To bring out the full dimensions of this absurd,
which apparently is accepted by Risk Analysis referees, let us go back to Figure 1. The idea
is to show that the two instances shown in Figure 1 are immeasurably less powerful than the
prototype maximin model (9) itself.
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Of particular interest to us is of course Instance II, namely the instance yielding info-gap’s
robust-satisficing decision model (8). My objective is to show that this instance is no more
than a “pale shadow” of the mighty maximin model (9).

Consider first the specification S(y) ← U(α, ũ), recalling that y ← α and that in the
framework of info-gap decision theory

U(α, ũ) : = neighborhood of size α around ũ (50)

= set of all u ∈ U that are within a distance α from ũ, (51)

where distances from ũ are defined by some suitable measure (norm/metric) of distance on the
uncertainty space U .

In contrast, in the framework of the maximin model (9),

S(y) := set of states associated with alternative y. (52)

This means that whereas the maximin model (9) allows S(y) to be any subset of the state
space under consideration, the specification S(y)← U(α, ũ) restricts S(y) to be a neighborhood
of size α around ũ.

As far as mathematical modeling is concerned, there is a huge difference, both method-
ologically and practically, between the following two requirements that a set V ⊆ U must
satisfy:

Requirement 1: V must be a subset of U . (53)

Requirement 2: V must be a neighborhood in U around a given point in U . (54)

Suffice it to say that the first is much less restrictive than the second: a neighborhood
U(α, ũ) ⊆ U is a very special subset of U .

Methodologically, this means that the worst-case analysis conducted by Instance II in Figure
1 is inherently local in nature: it is conducted over neighborhoods around ũ. Consequently, the
robustness model induced by the specification S(y)← U(α, ũ) is a model of local robustness.

Next, consider the specification f(y, s) = α, recalling that according to Instance II, y =
(q, α). The most significant implication of this specification is that the objective function of the
instance induced by this specification, namely function f = f(y, s), is independent of the state
variable s. This means in turn that the model induced by this specification does not seek
robustness with respect to the objective function f .

In other words, info-gap’s robust-satisficing decision model seeks robustness only with re-
spect the constraint rc ≤ r(q, u): for a given choice of alternative y = (q, α), a local worst-case
analysis is conducted on the neighborhood U(α, ũ) to check whether the constraint rc ≤ r(q, u)
is satisfied for all u ∈ U(α, ũ). If it is, then the choice y = (q, α) is admissible. If this worst-case
requirement is not satisfied, then y = (q, α) is inadmissible.

The important point to note then is that the above specifications narrow down the all-
embracing prototype maximin model (9) to a highly specialized model, namely a model that
seeks local robustness only with respect to the constraint rc ≤ r(q, u) confining the search
to the locale of ũ. The implications of this observation are summarized in Figure 3.

The facts are clear as daylight. There is no comparison between the capabilities of the
prototype maximin model defined in (9) to model and search for robustness, and its instance
stipulated by Instance II in Figure 1, namely info-gap decision theory’s robust-satisficing deci-
sion model (8).

And yet, statements such as that quoted above (Ben-Haim 2012, p. 7), which abound in
info-gap publications, absurdly claim that this instance has the capabilities to perform feats that
the powerful prototype that it derives from does not namely, handling unbounded uncertainty
spaces. And what is so farcical in all this is that this instance proposes to deal with unbounded
uncertainty spaces by ‘going local’, namely by in fact ignoring the severity of the uncertainty
manifested in unbounded uncertainty spaces, and focusing instead on the neighborhood of a
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Prototype Instance specified by Instance II

max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s), ∀s ∈ S(y)} max
q∈Q,α≥0

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)}

Type of robustness capable of seeking

payoffs constraints

local
√ √

global
√ √

other
√ √

payoffs constraints

local
√

global
other

Figure 3: A prototype and one of its many instances

point estimate ũ that can be just a wild guess of the true (unknown) value of the parameter.
Surely, the only way to put across the absurd in the rhetoric accompanying this instance is to
refer to it as the Instance that Roared.

I call models of this type voodoo decision models and theories based on such models voodoo
decision theories. In this context, the term voodoo has the same role it has in “voodoo
economics“, “voodoo science”, “voodoo statistics”, “voodoo mathematics”, and so on (see
Sniedovich 2010, 2012, 2012a, 2012b). The point of the sobriquet voodoo is to bring into

sharp focus that the robust-satisficing decision models (8) in fact ignores completely the per-

formance of decisions outside a given (bounded) neighborhood of the unbounded uncertainty
space. I call the region of the uncertainty space that is outside this neighborhood the No Man’s
Land (see Sniedovich 2010, 2012, 2012a, 2012b). In the case of info-gap decision theory, the No
Man’s Land of decision q is the set

NML(q) := U \ U(α∗, ũ) , α∗ = α̂(q, rc) + ε (55)

where ε can be arbitrarily small (but positive).

This is illustrated in Figure 4 where the large rectangle represents the uncertainty space U
and the small white circle represents the set U(α∗, ũ). The info-gap robustness of decision q
takes no account whatsoever of the performance of decision q over the black area representing
the No Man’s Land of decision q.

Note that, according to Ben-Haim (2006, p. 210), “. . . Most of the commonly encountered
info-gap models are unbounded . . . ”. This means that the size of set U(α∗, ũ) in this figure is
grossly exaggerated: it should be infinitesimally small. In other words, in most of the commonly
encountered applications of info-gap decision theory, set U(α∗, ũ) is minute (infinitesimally
small) compared to its No Man’s Land.

Thus, Figure 5 provides a much better representation of the inherently local orientation of
info-gap’s robustness model.

If this is not voodoo decision-making in the face of severe uncertainty, what is?

6 Info-gap rhetoric in action

In this section I take another look at the rhetoric in Ben-Haim (2012) regarding the relationship
between info-gap decision theory and Wald’s maximin paradigm. Since this rhetoric does not
refer to any specific maximin model, it is instructive to conduct this discussion with the following
two models in mind:

(The Prototype) (The Instance that Roared)

Maximin model Info-gap’s robust-satisficing decision model

max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s),∀s ∈ S(y)} max
q∈Q,α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)}

(56)
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Figure 4: Info-gap’s No Man’s Land of decision q
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Recall that the specification (instantiation) that yields the Instance that Roared is as follows
(see Figure 1):

y ← (q, α); s← u; Y ← Q× [0,∞); S(y)← U(α, ũ); f(y, s)← α; con(y, s)← rc ≤ r(q, u)
(57)

On the agenda here is the text in Ben-Haim (2012, pp. 6-7) which advices on the similarities
and differences between info-gap’s measure of robustness and the measure of robustness that
characterizes Wald’s maximin (or rather min-max) paradigm.

The misleading message implied by this text is this:

· Unlike the min-max paradigm—which cannot cope with situations where the uncertainty
space is unbounded, or unknown—info-gap’s robust-satisficing decision model is capable
of dealing with such difficult situations.

· In fact, info-gap decision theory was developed specifically to handle such situations.

· Info-gap’s robust-satisficing decision model is not based on a worst-case analysis.

· Clearly then, info-gap’s robust-satisficing decision model is definitely not a maximin
model.

Let us then take a closer look at these claims.

6.1 What is a min-max strategy?

Consider this:

A widely occurring operational distinction between risk analyses hinges on whether
or not meaningful worst cases can be identified. When one can plausibly specify
the worst events that can occur (and presuming we don’t know probability distribu-
tions), then one might justifiably try to ameliorate these worst contingencies. This
can be done in many different ways, and we will refer to this type of strategy as
min-max analysis: minimizing the maximum damage.

Ben-Haim (2012, p. 6)

To see how packed with errors and misconceptions this statement is, recall Rawls’ formula-
tion of Wald’s min-max (maximin) paradigm:

The maximin rule tells us to rank alternatives by their worst possible outcomes: we
are to adopt the alternative the worst outcome of which is superior to the worst
outcome of the others.

Rawls (1971, p. 152)

The point is that from the standpoint of decision theory and optimization theory, an “out-
come” refers to two things:

· The payoff, namely the value attained by the objective function.

· An indication whether the relevant constraints are satisfied or violated.

However, according to this quoted statement, “min-max analysis” engages only in “minimiz-
ing the maximum damage”, the implication being that it is only an objective function analysis.
The conclusion to be drawn from this paragraph is then that min-max models cannot perform
worst-case analysis of constraints.

In fact, the phrase “minimizing the maximum damage” in Ben-Haim (2012) is doubly mis-
leading. It is misleading not only because it, deliberately or inadvertently, gives the wrong
impression that maximin models cannot seek robustness with respect to constraints. It is mis-
leading on account of its attempt to thereby disassociate info-gap’s robustness model from
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the so-called mini-max strategy which purportedly engages only in “minimizing the maximum
damage”.

It is also important to take note that a key implication of this statement is that info-gap’s
robust-satisficing decision model is not based on a worst-case analysis.

This, of course, is a blatant misrepresentation. The clause ∀u ∈ U(α, ũ) in (8) is an iconic
local worst-case clause: it requires the constraint rc ≤ r(q, u) to be satisfied by the worst u in
U(α, ũ). In other words, it requires decision q to be robust, against deviations/perturbations
in the value of ũ, in a worst-case sense.

6.2 Specification of meaningful worst contingencies

Next, consider this:

The ability to implement a min-max analysis depends on identifying meaningful
worst contingencies. This is feasible in many situations. The concept of a “mean-
ingful worst case” depends on knowledge and judgment that may be within the risk
analyst’s competence. However, it is not usually sufficient to specify a worst case in
some formal or abstract sense, such as the set of all contingencies that are consistent
with the laws of science.

Ben-Haim (2012, p. 6)

These comments apply not only to “a min-max analysis”, they equally apply to info-gap
modeling, namely to the specification of the uncertainty space U on which neighborhoods
U(α, ũ), α ≥ 0 are defined.

That is, according to info-gap decision theory, the uncertainty space U contains all the

neighborhoods U(α, ũ), α ≥ 0 and it represents the set of all the possible/plausible values of
u. Thus, constructing the set U is completely equivalent to the construction of the state space
S of a maximin model.

To wit, the specification of “meaningful worst contingencies” is an integral part of the
specification of the state space of the maximin model, S. And often the worst contingencies
are not identified and specified at the outset, but rather are determined by the worst-case
analysis. But the very same modeling issues that are encountered in specifying the state spaces
of maximin models are encounter in specifying the uncertainty spaces of info-gap robustness
models:

Maximin Info-gap

s := state variable u := uncertainty parameter
S := set of all possible/plausible values of s. U := set of all possible/plausible values of u.

In both cases, worst-case contingencies are incorporated in the specification of the “set of
possible/plausible contingencies”, be it U or S, either explicitly or otherwise.

Next, consider the following statement:

Info-gap theory is not a worst case analysis. While there may be a worst case, one
cannot know what it is and one should not base one’s policy upon guesses of what
it might be.

Ben-Haim (2010, p. 9)

As I have already dealt with the fact that info-gap theory is indeed a worst case analysis par
excellence, I need not respond to the blatant misrepresentation opening this statement. Rather,
the point I want to single out for attention is that it is most interesting that Ben-Haim (2010)
appears reluctant to estimate or “guess” the worst contingencies. Yet, Ben-Haim (2007, p. 2) is
quite happy for info-gap’s robustness analysis to be conducted around a point estimate ũ that
is no more than a wild guess of the true value of u:
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The best estimate, ũ, of an info-gap model of uncertainty is sometimes a wild guess,
since in most cases the horizon of uncertainty, α, is unknown.

Ben-Haim (2007, p. 2)

Proceeding then on the universally accepted maxim that the results of an analysis are only
as good as the estimates on which they are based, doesn’t it follow that the results generated
by info-gap’s robustness model can be no more than wild guesses?

6.3 The boundary between possible and impossible events

Next, consider this:

Min-max analysis is most useful when the analyst is able to avoid vacuous specifica-
tion of worst cases. However, when information is really scarce, for instance, when
processes are poorly understood or changing, then even typical cases cannot be re-
liably identified. It may then be impossible to meaningfully specify the boundary
between extreme but possible occurrences, and the impossible or negligible.

Ben-Haim (2012, p. 6)

Again:
These comments apply not only to the min-max analysis but to info-gap modeling as well,

namely to the specification of the uncertainty space U on which neighborhoods U(α, ũ), α ≥ 0
are defined.

That is, according to info-gap decision theory, the uncertainty space U contains all the

neighborhoods U(α, ũ), α ≥ 0 and represents the set of all the possible/plausible values of u.
Thus, constructing the set U is completely equivalent to the construction of the state space S
of a maximin model.

So whatever difficulties are encountered in meaningfully specifying the boundary between
extreme but possible occurrences, and the impossible or negligible, in the framework of a max-
imin model are also encountered in the framework of an info-gap robust-satisficing decision
model.

In short, the whole issue of stipulating the boundaries between extreme but possible occur-
rences, and the impossible or negligible, is an integral part of specifying the uncertainty space
of info-gap models just as it is an integral part of specifying the state space of maximin models:

Maximin Info-gap

s := state variable u := uncertainty parameter
S := set of all possible/plausible values of s U := set of all possible/plausible values of u

Also, if the uncertainty that info-gap decision theory claims to deal with is so severe that it
is impossible to meaningfully specify the boundary between extreme but possible occurrences,
and the impossible or negligible, wouldn’t it also be impossible to meaningfully specify the
point estimate ũ?

And if the point estimate ũ is allowed to be just a wild guess, why shouldn’t the worst
cases also allowed to be wild guesses?

6.4 And here comes the cavalry

What happens in situations where the min-max strategy purportedly cannot cope with the
severity of the uncertainty under consideration?

Simple: info-gap decision theory steps into the breach!

For consider the following paragraph:
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Nonetheless, even when worst cases cannot be meaningfully specified, the analyst
still has data, understanding, and mathematical representations: models in the
broad sense that we are using that term. It is simply that the analyst cannot re-
sponsibly specify the magnitude of error of these models. For instance, we have
many models for long-range climate change, but the earnest scientific disputes over
these models may preclude the ability to confidently bound the errors. Or, intro-
ducing a new species to an ecosystem, either deliberately as an genetically modified
organism or inadvertently by invasion, may alter the ecosystem dynamics in un-
known ways.
In such situations one can still formulate and implement a robustness analysis.
Info-gap theory has been developed precisely for the task. Lets discuss min-max
and info-gap concepts of robustness.

Ben-Haim (2012, p. 7)

That is, Ben-Haim (2012) and Risk Analysis referees would have us believe that maximin
models cannot deal with the issues described in the first paragraph whereas info-gap’s robust-
satisficing model indeed can!

The absurd entailed by this paragraph is breathtaking. Because, the implication is that info-
gap’s robust-satisficing model (8), which as shown in Figure 1, is an instance of the maximin
model (9), namely Instance II, has capabilities that the maximin model (9) itself does not
possess!

The fact of the matter is of course that because the maximin model (9) is the prototype
and info-gap’s robust-satisficing model (8) is an instance thereof, if info-gap’s robust-satisficing
model (8) can indeed cope responsibly with the above difficulties, then it goes without saying
that the maximin model (9) can. But more than that, as the prototype, this maximin model
can cope with many other issues that info-gap’s robust-satisficing model (8) cannot possibly
cope with.

That said, the real question is: as a model of local robustness, how can info-gap’s robustness
model possibly handle responsibly situations where “the analyst cannot responsibly specify the
magnitude of error of these models”?

6.5 Min-max question vs info-gap question

Next, consider this:

The min-max concept of robustness responds to the question: How bad is the worst
case? This is valuable information for the risk analyst and decision maker because
if the worst case—after amelioration by a minmax analysis—is tolerable, then one
can reasonably say that the system is robust to uncertainty.

The info-gap concept of robustness responds to a different question: How wrong can
the models be and still guarantee that the outcome is acceptable? This is useful for
the risk analyst and decision maker because if the models can err enormously without
preventing acceptable outcomes, then one can reasonably say that the system is
robust to uncertainty.

Ben-Haim (2012, p. 7)

There is a number of problematic issues in this paragraph that ought to be addressed. But,
for our purposes it suffices to call attention to the following:

· As part of the ongoing effort to sharply differentiate between the maximin paradigm
and info-gap decision theory, the above text misleadingly suggests that maximin models
cannot address the question addressed by info-gap’s robust-satisficing model.

· To be sure, one would expect that the formulation of the issue(s) addressed by a prototype
would be different from the formulation of the issue(s) addressed by its various instances,
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especially instances that are significantly simpler than the prototype. So, it is hardly
surprising that the phrasing of the two questions in the above quote are different. However,
this does not imply that the “info-gap robustness question” is not an instance of the
“minimax robustness question”.

· In fact, the two questions can be given a slightly different phrasing (from that given them
in the quoted paragraph) so as to bring out that the “info-gap robustness question” is an
instance of the “min-max robustness question”.

· Thus, the phrasing of the “info-gap robustness question” in the quoted paragraph conceals
a great deal. It conceals the fact that the phrase

“still guarantee that the outcome is acceptable”

ought to be stated thus:

“still guarantee that the local worst-case outcome is acceptable”

As we know by now, the fact that info-gap’s robustness analysis amounts to a local worst-
case analysis is manifested very clearly by the clause rc ≤ r(q, u), ∀u ∈ U(α, ũ) that
appears both in info-gap’s robustness model and in info-gap’s robust-satisficing decision
model.

· Take special note of the reference to situations where “. . . models can err enormously
without preventing acceptable outcomes . . . ”. Because, the implication is that in other
situations info-gap decision theory is not capable of determining whether the system is
robust or fragile against severe uncertainty. The trouble with info-gap’s determinations
is that a system that info-gap’s robustness model deems fragile is not necessarily fragile
by measures of global robustness that assess the performance of the system over the entire
uncertainty space. That is, a system that is fragile in the neighborhood of ũ is not
necessarily fragile elsewhere in the uncertainty space.

6.6 Unbounded uncertainty spaces

Consider again the following paragraph:

These two concepts of robustness—min-max and info-gap—are different, motivated
by different information available to the analyst. The min-max concept responds
to severe uncertainty that nonetheless can be bounded. The info-gap concept re-
sponds to severe uncertainty that is unbounded or whose bound is unknown. It
is not surprising that min-max and info-gap robustness analyses sometimes agree
on their policy recommendations, and sometimes disagree, as has been discussed
elsewhere.(40)

Ben-Haim (2012, p. 7)

where reference [40] is Ben-Haim et al. (2009).
I want to take another look at this paragraph in order to focus more closely on the recurring

emphasis in the info-gap literature on info-gap’s much vaunted ability to handle unbounded
uncertainty space.

· Again, in the attempt to sharply differentiate between info-gap robustness and of maximin-
robustness, this paragraph not only conceals the fact that info-gap robustness is a simple
instance of maximin-robustness but it gives a thoroughly distorted picture of maximin
models. What is more, it gives an utterly distorted representation of info-gap’s robustness
model’s mode of operation.

· To begin with, the claim that maximin models require their uncertainty space to be
unbounded is groundless. There are many situations where the uncertainty space of a
maximin model is unbounded (e.g. (2)).

21



· But what is more, as we know by now, if info-gap’s robustness model can deal with
unbounded uncertainty spaces then it goes without saying that so can prototype maximin
models!

· But, it is particularly important to appreciate what info-gap’s claimed ability to deal
with unbounded uncertainty spaces actually comes down to. To be able to appreciate
this fact it is important to keep in mind how info-gap’s robust-satisficing decision model
actually operates. Recall then that this model’s sole concern is robustness with respect
to a constraint. Thus, the results generated by this model are based only on whether for
any pair y = (q, α), the constraint rc ≤ r(q, u) is satisfied for all values of U(α, ũ), or
whether it is not. In other words, in its pursuit of a robust decision, this model’s primary
concern is not with whether the uncertainty space is bounded or unbounded but with
whether a decision satisfies or violates the constraint. Which means that for all the
fuss about the uncertainty space being unbounded, insofar as info-gap’s robust-satisficing
analysis is concerned, it is immaterial whether the space it operates in is bounded or
unbounded. The bottom line is that each neighborhood U(α, ũ), α ≥ 0 is bounded.

· I remind the reader that a constraint driven analysis is characteristic of maximin models
whose objective functions are independent of the state variable. For instance, in the case
of the maximin model (9), if f(y, s) = h(y), then

max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s),∀s ∈ S(y)} → max
y∈Y

min
s∈S(y)

{h(y) : con(y, s), ∀s ∈ S(y)}

= max
y∈Y

{h(y) : con(y, s), ∀s ∈ S(y)}. (58)

Thus, the worst outcome for alternative y is equal to h(y) if y is admissible, namely if it
satisfies the constraints con(y, s) for all s ∈ S(y).

In contrast, the worst-outcome for inadmissible values of y is catastrophic. So much so
that they are excluded from the maximin model at the outset.

Another angle from which to assess the real meaning of the assertion that “. . . The info-gap
concept responds to severe uncertainty that is unbounded or whose bound is unknown
. . . ”—an assertion which, needless to say, is made much of in Ben-Haim (2001, 2006,
2010)—is to take a look at Figure 5. This figure gives a far more realistic depiction of
the consequences of info-gap’s robustness model operating in an unbounded or for that
matter a vast uncertainty space. The result of this model operating in an unbounded or
vast space coupled with its analysis being, by definition, confined to the neighborhood the
of ũ is the No Man’s Land. This means of course that the info-gap robustness of decision
q takes no account whatsoever of the performance of decision q on the No Man’s Land.

One might well ask therefore: what is the big deal then in info-gap decision theory repre-
senting severe non-probabilistic uncertainty by unbounded uncertainty spaces if its “secret

weapon” for dealing with the huge challenges posed by such spaces is to . . . dodge these

challenges altogether and address instead the question:

– How robust is decision q to small deviations/perturbations in the value of ũ?

Another important point—discussed in Sniedovich (2012)—is that all this hullabaloo
about info-gap and its unbounded spaces actually reveals that info-gap scholars, and
by implication Risk Analysis referees, confuse the following two facts:

Fact 6.1 Info-gap allows its uncertainty space, U , to be unbounded, hence it allows the
neighborhoods U(α, ũ), α ≥ 0 to be vast (for large values of α). Thus, insofar as the
representation of the neighborhoods is concerned, α is unbounded.
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Fact 6.2 The imposition of the local worst-case robustness constraint rc ≤ r(q, u),∀u ∈
U(α, ũ) on α implies that the admissible values of α pertaining to decision q are re-
stricted to the range [0, α̂(q, rc)]. In other words, within the framework of info-gap’s
robust-satisficing decision model the admissible value of α is bounded above by α̂(q, rc).

What is so comical in all this is that info-gap scholars seem totally obtuse to the fact
that, for all the fuss about α being unbounded, when it comes to determining robustness
of decisions, this fact comes to naught. Because, to repeat, within the framework of info-
gap’s robust-satisficing decision model the admissible value of α is bounded above by
α̂(q, rc).

And the immediate implication of this is that the info-gap robustness of decision q is
determined in total disregard to the performance of decision q on the No Man’s Land
associated with this decision, namely NML(q) := U \ U(α∗, ũ), where α∗ = α̂(q, rc) + ε.

Add to this the fact that according to Ben-Haim (2001, 2006, 2010), U is typically
unbounded, the inevitable conclusion is that NML(q) is equally typically unbounded.
And the inference therefore must be that the info-gap robustness of decision q typically
depends only on the performance of decision q over a minute (infinitesimal) neighborhood
of U around ũ, as illustrated in Figure 5.

No amount of theoretic can change this fact.

As I have been arguing all along, a theory whose robustness model yields results that
depend only on a minute (infinitesimal) neighborhood of the uncertainty space around a
wild guess must be viewed as a voodoo decision theory.

· Just a few words about the contention that as a result of their purported different ap-
proaches to uncertainty, “. . . min-max and info-gap robustness analyses sometimes agree
on their policy recommendations and sometimes disagree. . . ”.

This, as this statement contends, was discussed in [40] (Ben-Haim et al. 2009). All
I need to say here about the fact that the maximin model used in [40] (Ben-Haim et
al. 2009) generates results that are different from the results generated by info-gap’s
robust-satisficing model only means this. In the article in question, info-gap’s robust-
satisficing model is compared to an instance of the prototype maximin model that
yields results that are different from those of info-gap’s robust-satisficing model. But,
that instance of the maximin model specified according to Instance I in Figure 1 always

generate exactly the same results as those generated by info-gap’s robust-satisficing de-
cision model.

· A review of reference [40] (Ben-Haim et al. 2009) is available on my website8.

Remark

In a sequel to this article, I plan to take a closer look at the rhetoric in the info-gap literature,
about the patently too good to be true, capability of info-gap’s model of local robustness to
provide a reliable tool for the management of a non-probabilistic severe uncertainty manifested
in unbounded uncertainty spaces.

Here I give a few pointers to the misconceptions that are at the bottom of the claims
denying that info-gap decision theory is ”. . . a “local” theory of robustness . . . ” as exemplifies
for instance in the following paragraph:

If the robustness is not large, and especially if the robustness is small, then con-
fidence is not warranted. If the robustness is small then confidence is warranted
only “locally,” near the models, while if the robustness is large then confidence is

8See http://info-gap.moshe-online.com/reviews/review 12.html
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Warning: Given that the size of the page is finite and the uncertainty space is unbounded, it is
necessary to exaggerate the size of the white circle. Take note then that the figure displays only a
minute part of the No Man’s Land as this No Man’s Land extends limitlessly in all directions.

Figure 5: Info-gap’s No Man’s Land of decision q
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warranted over a wide domain of deviation from the models. Info-gap theory uses
the analyst’s models, but this does not make it a “local” theory of robustness.

Ben-Haim (2012, p. )

My basic thesis is that claims such this stem from a profound confusion of the two facts I
discuss above. Namely, the fact that info-gap decision theory allows its uncertainty space, U
to be unbounded, and the fact that in the framework of info-gap’s robust-satisficing decision
model the admissible value of α is bounded above by α̂(q, rc). Incredible though it make
sound, a basic confusion as to how these two facts relate to one another is apparently behind
assertions such as: “. . . but this does not make it a “local” theory of robustness.”

For consider what a denial of the fact that info-gap decision theory is “. . . a “local” theory
of robustness” amounts to. This denial implies that in spite of the fact that info-gap decision
theory’s robustness model dictates that a single violation of the performance constraint rc ≤
r(q, u) in the proximity of the estimate ũ renders decision q fragile—regardless of how well/badly
decision q performs elsewhere on U —Ben-Haim (2012) insists that info-gap’s robustness is not
a measure of local robustness!

Happily, it is elementary to demonstrate the absurd in denying that info-gap decision theory
is “. . . a “local” theory of robustness.” For instance, it is easy to formulate examples where a
decision is extremely robust over the uncertainty space U , yet info-gap decision theory deems
this decision to be very fragile. The pathologic case is, of course, where decision q satisfies the
performance constraint everywhere on U except at u = ũ. The info-gap robustness of q is equal
to 0, yet q is extremely robust against the variation of u over U .

Another vivid illustration of the inherently local orientation of info-gap’s robustness model
is the crucial role that the point estimate ũ plays in determining the robustness of decisions.
This is illustrated in Figure 6, where the domains of acceptable values of u associated with two
decisions, q′ and q′′, are represented by the respective shaded areas.

Note that the set of acceptable values of u associated with decision q′ is markedly larger
than the set of acceptable values of u associated with decision q′′. Therefore, one can sensibly
argue that decision q′ is much more robust than decision q′′ against variations in u over U .

Yet, info-gap decision theory cannot assess the robustness of these decisions to determine
which is the more robust. This is so because to determine the robustness of decisions, info-gap
decision theory requires the analysts to specify the “center-point” of the locale, or neighborhood,
where the robustness is assessed. The robustness would then depend on the location of this
“center-point” in the uncertainty space U . Since Figure 6 does not stipulate the location of
this point, it is impossible to determine which decision is more info-gap robust in this case.
Furthermore, to compare the info-gap robustness of the two decisions, we need to know how
the neighborhoods around the “center-point” are defined.

In short, incredible as it may appear , based on the information displayed in this figure,
info-gap decision theory cannot determine which decision is more robust against the severe
uncertainty in the true value of u.

To resolve this difficulty, suppose that we allow the neighborhoods to be represented by
circles centered at ũ where “center-point” ũ is located exactly at the center of U , that is at the
center of the white circle associated with decision q′, which is also the center of the gray circle
associated with decision q′′.

In this case, the info-gap robustness of decision q′ would be much smaller than the info-gap
robustness of decision q′′.

This, needless to say is not at all surprising because:

· Info-gap robustness is not a measure of robustness against the variations in the value of
parameter u over its set of possible/plausible values, U .

· Info-gap robustness is a measure of robustness against small deviations/perturbations
in the value of the estimate ũ. The info-gap robustness of decision q is determined by
the local performance of q in the neighborhood of the estimate. Large deviations from
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Figure 6: The tale of two decisions
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the estimate are considered only if all smaller deviations do not violate the performance
constraint.

This is a measure of local robustness par excellence.

The other side of the absurd assertion “. . . but this does not make it a “local” theory of
robustness” is the attribution of “global” capabilities to info-gap’s robustness model. To explain
it, let

A(q) : = set of acceptable values of u pertaining to decision q (59)

= {u ∈ U : rc ≤ r(q, u)}. (60)

The staggering misconception that is exhibited in the attribution of “global” capabilities to
info-gap’s robustness model is evident in scores of info-gap publications. This misconception
is manifested in the claims that info-gap decision theory ranks decisions according to the size
of their sets of acceptable values of u, such that the larger the better, hence that it selects the
decision with the largest set of acceptable values of u. For instance,

Info-gap analysis allows the decision maker to identify solutions that perform satis-
factorily well under the widest possible range of conditions.

Hall and Ben-Haim (2007, p. 7)

The robust satisficer answers two questions: first, what will be a “good enough” or
satisfactory outcome; and second, of the options that will produce a good enough
outcome, which one will do so under the widest range of possible future states of
the world.

Schwartz, Ben-Haim and Dasco (2010, p. 213)

It asks, instead, “What kind of return do we want in the coming year, say, in order
to compare favorably with the competition? And what strategy will get us that
return under the widest array of circumstances?”

Schwartz, Ben-Haim and Dasco (2010, p. 220)

For an individual who recognizes the costliness of decision making, and who identifies
adequate (as opposed to extreme) gains that must be attained, a satisficing approach
will achieve those gains for the widest range of contingencies.

Schwartz, Ben-Haim and Dasco (2010, p. 223)

Decisions that cause the system to exceed the performance criterion over a wide
range of uncertainty are said to be more “robust” or “immune to failure” (Ben-
Haim 2006).

van der Burg and Tyre (2011, 304)

To show the absurd in these claims is straightforward. For consider Figure 7, where the
shaded areas represent the sets of acceptable values of u pertaining to the two decisions, namely
A(q′) and A(q′′). Note that in spite of the fact that set A(q′) is much larger than set A(q′′),
the info-gap robustness of decision q′′ is deemed, according to the precepts of info-gap decision
theory, larger than the info-gap robustness of decision q′.

In short: info-gap’s robustness of decision q does not measure the “size” of the set of accept-
able values of u associated with decision q. Hence, info-gap’s robust-satisficing decision model
does not seek a decision whose set of acceptable values of u is the largest. Info-gap robustness
is not a measure of the “size” of A(q), it is a measure of the “size” of the largest neighborhood
around ũ that is contained in A(q). This, obviously, is a measure of local robustness.
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ũ

Figure 7: The tale of two decisions

28



6.7 What does all of this come down to?

The discussion in Ben-Haim (2012, pp. 6-7) on the differences and similarities between maximin
models and info-gap’s robust-satisficing decision model is grossly misleading. It depicts info-
gap decision theory as a theory that was designed specifically to deal with situations that
cannot be handled by maximin models due to the extreme severity of the uncertainty: the
uncertainty space is unbounded or its bound is unknown. It thus misleadingly suggests that
info-gap’s robust-satisficing decision model can deal with situations that are outside the purview
of maximin models.

The discussion is also problematic technically:

· It erroneously suggests that maximin models requires their uncertainty space to be bounded.

· It misleadingly suggests that the specification of info-gap’s uncertainty space U is some-
how fundamentally different from the specification of the state space of maximin models.

· It misleadingly suggests that maximin models cannot address robustness against devia-
tions from a nominal value of a parameter.

It is particularly noteworthy that the discussion is completely oblivious to the difference
between local and global robustness and robustness with respect to payoffs vs robustness with
respect to constraints. These differences are crucial for a full appreciation of the relationship
between generic maximin models such as (9) and the instance used in info-gap decision theory,
namely (8).

In short, the discussion in Ben-Haim (2012, pp. 6-7) gives an utterly distorted account of
the role and place of info-gap decision theory in decision making under severe uncertainty. As
elsewhere in the info-gap literature, the misconceptions in Ben-Haim’s (2012, pp. 6-7) stem
from a comparison of the pair

Maximin model Info-gap’s robust-satisficing decision model

max
q∈Q

min
u∈U(α′,ũ)

r(q, u) max
q∈Q,α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} (61)

for some given value of α′.
The following question is therefore inescapable: why the reluctance to discuss the similarities

and differences between these two models?

(The Prototype) (The Instance that Roared)

Maximin model Info-gap’s robust-satisficing decision model

max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s),∀s ∈ S(y)} max
q∈Q,α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)}

(62)

Is it because such a comparison will immediately confirm that info-gap’s robust-satisficing
decision model is indeed a maximin model after all, and thus will expose the rhetoric in the
info-gap literature for what they are?

As for the worst case issue:

The narrative in the info-gap literature on the non-existence of a worst case in unbounded
uncertainty spaces and the alleged secret weapon possessed by info-gap decision theory to deal
with unbounded uncertainty spaces amounts to no more than a misleading rhetoric.

This narrative conceals the following simple hard fact:

Fact 6.3 Info-gap’s robustness model and info-gap’s robust-satisficing model belong in a class
of maximin models whose objective function is independent of the uncertainty parameter (state
variable). Such models seek robustness only with respect to constraints. Hence, in the context
of these models the existence of a worst case is a not an issue. This is so because, for each
alternative, a worst outcome always exists even if the uncertainty space is unbounded.
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As an aside, readers who are familiar with the concept Radius of Stability (circa 1960) are
advised that info-gap’s robustness model is a simple radius of stability model (Sniedovich 2010,
2012, 2012a, 2012b).

7 Summary and conclusions

Info-gap decision theory is based on two simple mathematical models whose basic properties
are transparent so as to require no elaborate analysis/investigation:

Info-gap’s robustness model Info-gap’s robust-satisficing decision model

max
α≥0

{α : rc ≤ r(q, u), ∀u ∈ U(α, ũ)} max
q∈Q,α≥0

{α : rc ≤ r(q, u),∀u ∈ U(α, ũ)} (63)

It is elementary to prove formally and rigorously that both are instances of the following
prototype maximin model:

max
y∈Y

min
s∈S(y)

{f(y, s) : con(y, s), ∀s ∈ S(y)}. (64)

Such proofs have been in the public domain since 2007.

No amount of rhetoric can change these facts.

And yet!

Respectable peer-reviewed journals, such as Risk Analysis, continue to publish articles as-
serting fallacies both about Wald’s maximin paradigm and info-gap decision theory, and the
relationship between them.

It would seem that this is due to the rhetoric that info-gap scholars use as a substitute for a
rigorous analysis of the above three models and their relationships, which conceal from referees
the hard facts!

I submit that the readership of these journals deserve better!

Challenging risk analysis problems, such as decision under a severe, non-probabilistic un-
certainty with unbounded uncertainty spaces, cannot be “solved” by rhetoric about a model of
local robustness. Neither can a well-established 40-year old model of local robustness become
new and radically different at a stroke of a pen. Such rhetoric impedes rather than facilitates
progress in this important and challenging area of risk analysis.

Followers of info-gap decision theory, indeed readers of the info-gap literature, would there-
fore be well advised to assess critically misleading statements such as these:

Info-gap decision theory is radically different from all current theories of decision
under uncertainty. The difference originates in the modeling of uncertainty as an
information gap rather than as a probability. The need for info-gap modeling and
management of uncertainty arises in dealing with severe lack of information and
highly unstructured uncertainty.

Ben-Haim (2001, 2006, p. xii)

In this book we concentrate on the fairly new concept of information-gap uncertainty,
whose differences from more classical approaches to uncertainty are real and deep.
Despite the power of classical decision theories, in many areas such as engineering,
economics, management, medicine and public policy, a need has arisen for a different
format for decisions based on severely uncertain evidence.

Ben-Haim (2001, 2006, p. 11)

Probability and info-gap modelling each emerged as a struggle between rival intellec-
tual schools. Some philosophers of science tended to evaluate the info-gap approach
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in terms of how it would serve physical science in place of probability. This is like
asking how probability would have served scholastic demonstrative reasoning in the
place of Aristotelian logic; the answer: not at all. But then, probability arose from
challenges different from those faced the scholastics, just as the info-gap decision
theory which we will develop in this book aims to meet new challenges.

Ben-Haim (2001 and 2006, p. 12)

The emergence of info-gap decision theory as a viable alternative to probabilistic
methods helps to reconcile Knights dichotomy between risk and uncertainty. But
more than that, while info-gap models of severe lack of information serve to quantify
Knights unmeasurable uncertainty, they also provide new insight into risk, gambling,
and the entire pantheon of classical probabilistic explanations. We realize the full
potential of the new theory when we see that it provides new ways of thinking about
old problems.

Ben-Haim (2001 p. 304; 2006, p. 342)

Info-gap decision theory clearly presents a ‘replacement theory’ with which we can
more fully understand the relation between classical theories of uncertainty and
uncertain phenomena themselves.

Ben-Haim (2001 p. 305; 2006, p. 343)

The management of surprises is central to the “economic problem”, and info-gap
theory is a response to this challenge. This book is about how to formulate and eval-
uate economic decisions under severe uncertainty. The book demonstrates, through
numerous examples, the info-gap methodology for reliably managing uncertainty in
economics policy analysis and decision making.

Ben-Haim (2010, p. x)

Info-gap theory is not a worst case analysis. While there may be a worst case, one
cannot know what it is and one should not base one’s policy upon guesses of what
it might be.

Ben-Haim (2010, p. 9)

The difference from min-max approaches is that we are able to select a policy without
ever specifying how wrong the model actually is. Min-max and info-gap robust-
satisficing strategies will sometimes agree and sometimes differ.

Ben-Haim (2010, p. 10)

The info-gap model is unbounded in the sense that there is no largest set and there
is no worst case.

Carmel and Ben-Haim (2005, p. 635)

It is important to emphasize that the robustness ĥ(R∗, c) is not a minimax algorithm.
In minimax robustness analysis, one minimizes the maximum adversity. This is not
what info-gap robustness does. There is no maximal adversity in an info-gap model
of uncertainty: the worst case at any horizon of uncertainty h is less damaging
than some realization at a greater horizon of uncertainty. Since the horizon of of
uncertainty is unbounded, there is no worst case and the info-gap analysis cannot
and does not purport to ameliorate a worst case.

Ben-Haim (2005, p. 392)

While there is a superficial similarity with minimax decision making, no fixed bounds
are imposed on the set of possibilities, leading to a comprehensive search of the set
of possibilities and construction of functions that describe the results of that search.

Hine and Hall (2010, p. 17)
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Info-gap generalizes the maximin strategy by identifying worst-case outcomes at
increasing levels (horizons) of uncertainty. This permits the construction of ‘ro-
bustness curves’ that describe the decay in guaranteed minimum performance (or
worst-case outcome) as uncertainty increases.

Wintle et al. (2011, p. 357)

These two concepts of robustness—min-max and info-gap—are different, motivated
by different information available to the analyst. The min-max concept responds
to severe uncertainty that nonetheless can be bounded. The info-gap concept re-
sponds to severe uncertainty that is unbounded or whose bound is unknown. It
is not surprising that min-max and info-gap robustness analyses sometimes agree
on their policy recommendations, and sometimes disagree, as has been discussed
elsewhere.(40)

Ben-Haim (2012, p. 7)
(40) = Ben-Haim et al. (2009).

The relation between min-max and info-gap robust-satisficing has been discussed at
length elsewhere.12 The two methods have much apparent similarity, though also
important differences. Most significantly, they depend on different prior information,
and can lead to different solutions. Briefly, min-max requires knowledge of a worst
case. In contrast, the horizon of uncertainty of an info-gap model is unknown and
unbounded, thus deliberately avoiding the specification of a worst case. On the
other hand, the info-gap robustness does require the analyst to specify the worst
acceptable outcome, which in engineering design is usually a design specification.

Ben-Haim (2012a, p. 9)
[12] = Ben-Haim et al. (2009).

Experience with info-gap decision theory suggests that referees of journals devoted to the
study of risk, such as Risk Analysis, should be more vigilant about the claims regarding the
nature of this theory, and the assertion about its place in the state of the art.
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