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Preface

In the article “Robust satisficing and the probability of survival” that was published recently
in the peer-reviewed journal International Journal of Systems Science, we find this statement
which attributes info-gap decision theory the ability to maximize the probability of success
without using probabilistic information:

We present three propositions, based on info-gap decision theory (Ben-Haim 2006),
that identify conditions under which the probability of success is maximised by an
agent who robustly satisfices the outcome without using probabilistic information.

Ben-Haim (2013, p. 1)

This statement echoes earlier pronouncements in the literature on info-gap decision theory
that not only pit info-gap decision theory against Probability Theory, but go so far as to assert
that info-gap decision theory provides no less than a ‘replacement theory’ for Probability Theory
itself. For instance:

Probability and info-gap modeling each emerged as a struggle between rival intellec-
tual schools. Some philosophers of science tended to evaluate the info-gap approach
in terms of how it would serve physical science in place of probability. This is like
asking how probability would have served scholastic demonstrative reasoning in the
place of Aristotelian logic; the answer: not at all. But then, probability arose from
challenges different from those faced the scholastics, just as the info-gap decision
theory which we will develop in this book aims to meet new challenges.

Ben-Haim (2001 and 2006, p. 12)

Info-gap decision theory clearly presents a replacement theory with which we can
more fully understand the relation between classical theories of uncertainty and
uncertain phenomena themselves.

Ben-Haim (2001 p. 305; 2006, p. 343)

∗This article was written for theRisk Analysis 101 Project to provide a Second Opinion on pronouncements
made in the info-gap literature on the use of info-gap robustness as a proxy for a probability of survival.
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If you wonder on what grounds are these audacious statements made—after all, it is not very
often that one comes across statements such as these in the scientific literature—let me assure
you straightaway, that it does not take much to discover that the hard facts about info-gap
decision theory tell a different story altogether!

My objective is then to demonstrate the yawning gap between the hard facts about info-gap
decision theory, and the rhetoric attributing it the ability to maximize the probability of success
without using probabilistic information, and to thereby show that this rhetoric is nothing short
of farcical.

To do this, I begin by reminding the reader of the long established fact that certain highly
specialized probabilistic problems have equivalent non-probabilistic counterparts. In fields
such as operations research, stochastic optimization and robust optimization, these equivalent
non-probabilistic problems are often called deterministic equivalents (e.g. Charnes and
Cooper 1963, Charnes et al. 1964, Prékopek 1995, Birge and Louveaux 1997, Gassmann and
Ziemba 2013). The idea of obtaining equivalent non-probabilistic problems from probabilistic
problems in the framework of decision-making models goes back to at least the 1960s, thus
predating info-gap decision theory by some forty years or so. For instance, consider the following
(emphasis added):

Chance constrained programming admits random data variations and permits con-
straint violations up to specified probability limits. Different kinds of decision rules
and optimizing objectives may be used so that, under certain conditions, a program-
ming problem (not necessarily linear) can be achieved that is deterministic—in that
all random elements have been eliminated. Existence of such ‘deterministic equiv-
alents’ in the form of specified convex programming problems is here established for
a general class of linear decision rules under the following 3 classes of objectives (1)
maximum expected value (‘E model’), (2) minimum variance (‘V model’), and (3)
maximum probability (‘P model’). Various explanations and interpretations of
these results are supplied along with other aspects of chance constrained program-
ming For example, the ‘P model’ is interpreted so that H A SIMON’S suggestions
for ‘satisficing’ can be studied relative to more traditional optimizing objectives as-
sociated with ’E’ and ‘V model’ variants.

Charnes and Cooper (1963, p. 18)

For our discussion, the ‘P model’ is of particular interest as it will enable us to bring to
light the rationale behind the proposition to maximize the probability of success by means
of a non-probabilistic model. It is important to emphasize, though, that in essence, this
rationale is so rudimentary that generally it is taken for granted. Namely, one generally does
not bother to elaborated it explicitly, as it is taken to be implied directly by the foundational
axioms of probability theory (Feller 1968, Rozanov 1977). Still, for our purposes, it is a good
idea to state it formally:

A Well Known Fact:
Let Y be a random variable, c be a numeric scalar, and let P (Y ≤ c) denote
the probability of the event “Y ≤ c ”. Then P (Y ≤ c) is non-decreasing with c,
namely

a < b −→ P (Y ≤ a) ≤ P (Y ≤ b).

Note how the seemingly “non-probabilistic” information, namely “a < b”, translates to the
critically important “probabilistic information”, “P (Y ≤ a) ≤ P (Y ≤ b)”.

And to see how this is put to work, consider the following probabilistic problem and the
deterministic equivalent counterpart that clearly derives from it, on grounds of the above well
known fact:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (Y ≤ h(x)) h∗ := max
x∈X

h(x) (1)
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where h is a real-valued function on X.

For the record, then

Theorem 1 Any optimal solution to the deterministic equivalent in (1) is also an optimal
solution to the probabilistic problem in (1). And if P (Y ≤ c) is strictly increasing with c,
then the two problems have the same optimal solutions: x′ ∈ X is optimal with respect to the
probabilistic problem iff it is optimal with respect to the deterministic equivalent.

This basic results can be refined by allowing the random variable Y to be a function of a
random n-vector W and x. So assume that Y = t(x,W ) where W is a random n-vector and t
is a real-valued function on X × Rn, where R denotes the real line, such that the probability
distribution function of t(x,W ) is independent of x. Thus, the performance constraint is of
the form t(x,w) ≤ h(x) where w ∈ Rn denotes the realization of W . It follows then that in this
case the probabilistic problem and its deterministic equivalent counterpart are as follows:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (t(x,W ) ≤ h(x)) h∗ := max
x∈X

h(x) (2)

To illustrate, consider the constraint

a(x) + d(x)g(w) ≥ r (3)

where a and d are real-valued function on X, r is a given numeric scalar, g is a real-valued
function on Rn, and w is a realization of a random n-vector W . Assume that d(x) > 0,∀x ∈ X.

By inspection, this constraint can be rewritten as follows:

−g(w) ≤ a(x)− r
d(x)

(4)

hence,

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (a(x) + d(x)g(W ) ≥ r) h∗ := max
x∈X

a(x)− r
d(x)

(5)

Observe that, in this case, the random variable that yields the “standard” form P (Y ≤ h(x))

is Y = t(x,W ) = −g(W ), and h(x) =
a(x)− r
d(x)

.

The point to note here, however, is that the format t(x,w) ≤ h(x) and the requirement
that the probability distribution function of Y = t(x,W ) be independent of x are extremely
restrictive.

But most of all, as we just saw, in cases such as this the deterministic equivalent can be
derived by inspection directly from the performance constraint under consideration.
Which means of course that the derivation of the above deterministic equivalent has got
nothing whatsoever to do with info-gap decision theory!

About the title of the article

Indeed, once you examine how the derivation/formulation of deterministic equivalents plays
out in the case of info-gap decision theory, specifically in the case where the three propositions
referred to in the statement quoted above from Ben-Haim (2013) hold, it becomes clear that
all this hullabaloo about info-gap decision theory enabling you to “maximize the probability
of success without using probabilistic information” turns out to be a classic case of “much ado
about nothing”.

To appreciate this fact, you need to keep in mind that the performance constraint employed
by info-gap decision theory is of the form f(x,w) ≤ b, where b is a given numeric scalar and
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f is a real-valued function on X ×W, where W denotes the uncertainty set, namely the set of
possible/plausible values of the uncertainty parameter w. Moreover, you need to take note that
info-gap decision theory’s formulation of deterministic equivalents, as made clear, for instance
in Ben-Haim (2013), is predicated on the performance constraint f(x,w) ≤ b having the
following properties:

· The uncertainty parameter w is a numeric scalar, namely W ⊆ R.

· The performance function f(x,w) is monotone with w.

Once this is clear, you realize that in situations such as this, the probabilistic robustness
problem has to begin with a trivially obvious deterministic equivalent. Namely, the
deterministic equivalent can, without any appeal to info-gap decision theory, or any
other theory for that matter, be deduced from the probabilistic robustness problem itself, by
inspection, to thereby render the heavy guns that info-gap decision theory brings into play
for this purpose comically redundant.

To see that this is so, I reiterate that without any loss of generality, the assumption is that
w is a scalar and for each x ∈ X the value of f(x,w) is non-decreasing with w. Clearly then,
under these conditions, to maximize the value of P (f(x,W ) ≤ b) over x ∈ X, we simply select
an x ∈ X that admits the largest value of w ∈ W, subject to f(x,w) ≤ b. In other words, in
this case, to obtain the equivalent t(x,w) ≤ h(x) format we simply set:

t(x,w) ≡ w (6)

h(x) = max
w∈W

{w : f(x,w) ≤ b} , x ∈ X. (7)

Therefore, by inspection, we have:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (f(x,W ) ≤ b) h∗ := max
x∈X

h(x)

= max
x∈X,w∈W

{w : f(x,w) ≤ b}

Assumption: w is a numeric scalar and f(x,w) is non-decreasing with w.

(8)

The trouble is, of course, that an appeal to info-gap decision theory’s heavy guns for this
purpose in fact conceals from view how trivially simple this derivation is. And the bigger
trouble is that in the literature on info-gap decision theory, for example in Ben-Haim (2013),
all this lies buried under piles of rhetoric.

The end result is that, not only do readers get a totally distorted picture of info gap decision
theory’s claimed ability to “maximize the probability of success without using probabilistic
information”. Readers are misled to believe that this is an inherent capability of this theory
when the facts are that the existence and deduction of deterministic equivalents have got nothing
whatsoever to do with info-gap decision theory.

Hence, the title of this article.

Melbourne Moshe
Australia, The Land of the Black Swan ,
July 6, 2013
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1 Introduction

Over the past nine years, I had many occasions to discuss with risk analysts the proposition to
use a non-probabilistic decision theory, such as info-gap decision theory, as a tool for maxi-
mizing the probability of survival, or success. I also kept abreast with publications advocating
this idea in a number of peer-reviewed journals, e.g. Medical Hypotheses, International Journal
of Systems Science, and Risk Analysis: An International Journal.

So, in this article I share with the reader some of my conclusions about this proposition,
notably the manner in which it is examined/discussed in the literature on info-gap decision
theory. To set the stage, I suggest that you ask yourself the following question:

How can a non-probabilistic decision theory, such as info-gap decision theory, possibly
enable the maximization of the probability of survival/success?

I imagine that your immediate hunch would probably be that such a proposition

· may well be too good to be true; or that

· it must have a touch of alchemy about it; or that

· the probabilistic problems under consideration are trivial.

To illustrate the last point, consider the following performance constraint

f(x,w) ≤ b (9)

where x ∈ X represents a decision variable, w ∈ Rn represents an uncertainty parameter, b is a
given numeric scalar, f is a real-valued function on X × Rn, and R denotes the real line.

Now, suppose that the uncertainty parameter w is in fact a realization of some random
n-vector W , and the objective is to maximize the probability that this performance constraint
is satisfied. The probabilistic problem that we would have on our hands is then this:

Probabilistic Problem: p∗ := max
x∈X

P (f(x,W ) ≤ b). (10)

To complicate matters, assume, as info-gap decision theory indeed does, that the
probability measure P is completely unknown.

The question is then this: how does one tackle this probabilistic problem considering the
uncongenial, indeed forbidding, conditions that it is subject to?

One avenue of approach is to attempt to derive for it a deterministic equivalent: a
“deterministic” optimization problem whose optimal solutions are also optimal for the proba-
bilistic problem (e.g. Charnes and Cooper 1963, Charnes et al. 1964, Prékopek 1995, Birge
and Louveaux 1997, Gassmann and Ziemba 2013).

And yet, however naturally obvious this approach appears at first, it must be realized,
given our vast experience of the last fifty years or so, that this approach is applicable only
in very simple, namely highly specialized, situations. Practically speaking, this means that
this approach cannot be applied to the probabilistic problem as it is stated above, unless
simplifying conditions are impose on the problem. Indeed, a considerable simplification in
the above probabilistic problem would be required for a deterministic equivalent to exist.

The discussion on this idea in the Preface points in the direction of a simplification that
would be obtained by reasoning along the lines outlined in the next subsection.

1.1 A class of trivial probabilistic problems

Suppose that there is a real-valued function t on Rn and a real-valued function h on X such
that the performance constraint f(x,w) ≤ b is equivalent to the constraint t(w) ≤ h(x), namely

∀(x,w) ∈ X × Rn : t(w) ≤ h(x)←→ f(x,w) ≤ b (11)
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meaning that a pair (x,w) ∈ X × Rn satisfies the constraint f(x,w) ≤ b iff it satisfies the
constraint t(w) ≤ h(x).

Note that if this assumption holds, then the probabilistic problem under consideration,
namely (10), can be written as follows:

p∗ : = max
x∈X

P (f(x,W ) ≤ b) (12)

= max
x∈X

P (t(W ) ≤ h(x)) (13)

= max
x∈X

P (Y ≤ h(x)) , Y = t(W ). (14)

And since P (Y ≤ c) is non-decreasing with c, it follows that

h∗ := max
x∈X

h(x) (15)

is a deterministic equivalent of (10). In short, here we have:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (f(x,W ) ≤ b) h∗ := max
x∈X

h(x) (16)

Simplicity itself.

Example

Consider the rather exotic performance constraint

α(x) + [β(x)]γ(w) ≥ b (17)

where α and β are real-valued function on X and γ is a real-valued function on Rn. Assume
that β(x) > 1 and b > α(x) for all x ∈ X.

Note that under these conditions, this performance constraint can be re-written as follows:

−γ(w) ≤ − ln(b− α(x))

ln(β(x))
. (18)

Hence, we can set t(w) = −γ(w) and h(x) =
− ln(b− α(x))

ln(β(x))
. So, in this case we have:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P
(
α(x) + β(x)γ(W ) ≥ b

)
h∗ := max

x∈X

− ln(b− α(x))

ln(β(x))

(19)

Again, simplicity itself.

The next example represents a raft of typical probabilistic problems that have been known
in the fields of operations research and stochastic optimization ever since the concept of formu-
lating “deterministic equivalents” was introduced in the 1960’s (e.g. Charnes and Cooper 1963,
Charnes et al. 1964, Prékopek 1995, Birge and Louveaux 1997, Gassmann and Ziemba 2013).
This example also serves to show that “deterministic equivalents” of probabilistic problems can
also be used to good effect in situations where the probabilities of the events of interests are
known.

To illustrate, let us generalize somewhat the representation t(w) ≤ h(x) by allowing t to
depend on x. Thus, consider the case where the constraint f(x,w) ≤ b can be written as
t(x,w) ≤ h(x) where t is a real valued function on X × Rn.

However, in this case, P (t(x,W ) ≤ c) is required to be independent of x. In other words,
the cumulative probability distribution function of the random variable Y = t(x,W ) is required
to be independent of x. This condition ensures that P (t(x,W ) ≤ h(x)) is non-decreasing with
h(x), thereby ensuring that the deterministic equivalent would remain maxx∈X h(x).
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Example

Suppose that the decision variable x ∈ X and the random n-vector W interact1 in such a
way that f(x,w) = g(x) + v(x,w), where g is a real-valued function on X and v(x,w) is
the realization of a normal random variable with mean µ(x) and variance σ2(x) > 0, namely
v(x,W ) ∼ N (µ(x), σ2(x)).

Thus, the performance constraint f(x,w) ≤ b can be written as follows:

v(x,w) ≤ b− g(x). (20)

Now, this expression can be normalized/standardized, in the usual manner, by means of the
mean µ(x) and the variance σ2(x), to obtain the following equivalent normalized/standardized
constraint:

v(x,w)− µ(x)

σ(x)
≤ b− g(x)− µ(x)

σ(x)
. (21)

Hence, we can set

t(x,w) =
v(x,w)− µ(x)

σ(x)
(22)

h(x) =
b− g(x)− µ(x)

σ(x)
(23)

observing that since v(x,W ) is a normal random variable, it follows that t(x,W ) is a stan-
dard normal random variable, namely t(x,W ) ∼ N (0, 1), hence its distribution function is
independent of x. Consequently:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (g(x) + v(x,W ) ≤ b) |v(x,W )∼N (µ(x),σ2(x)) h∗ := max
x∈X

b− g(x)− µ(x)

σ(x)

(24)

Again, simplicity itself.

I shall not go into the well familiar procedure of using location and/or scaling parameters of
probability distribution functions to derive “standard” random variables. Suffice it to say that
in such cases, one can sometimes pre-process the performance constraint f(x,W ) ≤ b so as to
obtain an equivalent constraint of the form ξ ≤ h(x) where ξ denotes the “standard” random
variable of the family of random variables under consideration. In such cases the deterministic
equivalent would be maxx∈X h(x).

Definition 1 Consider the performance constraint f(x,w) ≤ b discussed above. We say that
this constraint is trivial if it submits to the representation t(w) ≤ h(x), as discussed above, or
the representation t(x,w) ≤ h(x), as discussed above, such that P (t(x,W ) ≤ c) is independent
of x. In either case, we refer to the probabilistic problem maxx∈X P (f(x,w)) ≤ b) as trivial.

Theorem 2 If the constraint f(x,w) ≤ b is trivial, then any decision that maximizes h(x)
over x ∈ X also maximizes P (f(x,W ) ≤ b) over x ∈ X, that is,

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (f(x,W ) ≤ b) h∗ := max
x∈X

h(x) (25)

Pure and simple!

1For example, consider the case where x is also an n-vector and f(x,w) = xTw. If W is a vector of n
stochastically independent normal random variables, then f(x,w) is a normal random variable.
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Remark

That said, I want to clarify my usage of the term trivial in this context. Take note then that
this term does not suggest that in cases where the representation t(w) ≤ h(x) exists, it is always
trivially easy to derive it from f(x,w) ≤ b. Rather, its function is to indicate that, however
complicated and unappealing the constraint f(x,w) ≤ b might appear to be, once you are
motivated by the proposition to tackle the problem considered via a“deterministic equivalent”,
you realize that this constraint can essentially be boiled down to a generic constraint of the
simple form y ≤ h(x) where y represents the realization of a (real-valued) random variable Y .
Once this is done, the task of deriving a deterministic equivalent for the probabilistic problem
maxx∈X P (Y ≤ h(x)), hence of maxx∈X P (f(x,W ) ≤ b), turns out to be a veritably trivial
exercise.

In short, the deterministic equivalents under consideration here are derived from the prob-
abilistic problems by inspection, by capitalizing on the well known fact that P (Y ≤ c) is
non-decreasing with c. Specifically, these deterministic equivalents can be derived, by inspec-
tion, directly from the performance constraints themselves.

I need hardly point out, though, that the label trivial by no means implies that the
optimization problem defined by the deterministic equivalent maxx∈X h(x) is trivial in the
sense that it is easy to solve. Indeed, for all we know, it may well turn out to be extremely
difficult to solve.

In the next section I take a quick look at a number of specific performance constraints. Each
and every one of these constraints is featured in the literature on info-gap decision theory. And
as you might have guessed, each and every one of these constraints is indeed trivial in the
above sense.

2 A gallery of trivial probabilistic problems

The objective of this section is to demonstrate that the probabilistic robustness problems for
which info-gap decision theory provides deterministic equivalents are manifestly trivial. The
main point here is that it is patently obvious in these cases, that it is straightforward to deduce
the t(w) ≤ h(x) representation or the t(x,w) ≤ h(x) representation, directly from the constraint
f(x,w) ≤ b. The question therefore arising is this: what is the point, the merit, indeed the
justification, for using info-gap decision theory’s sledgehammer approach for this purpose?

To allow the reader to easily relate the analysis here to the analysis in the info-gap literature,
I adopt in each case the notation used in the info-gap literature. The corresponding f(x,w) ≤ b
and t(w) ≤ h(x) formats used in this article should be obvious.

2.1 Example: foraging behavior problem

This is a recent version of an info-gap model that made its debut appearance in an article by
Carmel and Ben-Haim (2005). Here I consider the version discussed in Ben-Haim (2013), where
the performance constraint is formulated thus:

tg0 + (T − t)g1 ≥ Gc (26)

where t ∈ [0, T ) represent the decision variable, Gc and g0 are given numeric scalars, and the
numeric scalar g1 ≥ 0 represents the uncertainty parameter.

By inspection, the performance constraint can be written as follows:

g1 ≤
tg0 −Gc
T − t

. (27)

So if we let G1 denote the random variable governing the values of g1, then, by inspection,

Probabilistic problem Deterministic equivalent

p∗ := max
0≤t<T

P (tg0 + (T − t)G1 ≥ Gc) h∗ := max
0≤t<T

tg0 −Gc
T − t

(28)
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Nothing to it!

2.2 Example: Uncertain non-linear oscillator problem

Ben-Haim and Cogan (2011) consider the following performance constraint:

|Xc(q)| − |Xr(c)| ≥ δ (29)

where q ∈ Q represents the decision variable, c represents the uncertainty parameter and |Xc(q)|
and |Xr(c)| are positive numeric scalars that depend on q and c, respectively.

By inspection, this constraint can be written as follows:

|Xr(c)| ≤ |Xc(q)| − δ. (30)

Let C denote the random variable governing the value of c. Then, by inspection

Probabilistic problem Deterministic equivalent

p∗ := max
q∈Q

P (|Xc(q)| − |Xr(C)| ≥ δ) h∗ := max
q∈Q
|Xc(q)| (31)

Again, nothing to it!

2.3 Example: Risky assets

Ben-Haim (2013, Appendix C) examines the performance constraint:

u(w − pT r) + u(rT q) ≥ Gc (32)

where r ∈ Rn represents the decision variable, q ∈ Rn represents the uncertainty parameter, w
and Gc are given numeric scalars, p is a given n-vector, and u is a strictly increasing real-valued
function on the real line. The admissible values of r are constrained by 0 ≤ pT r ≤ w and
rj ≥ 0, j = 1, 2, . . . , n. Let u−1 denote the inverse of u.

By inspection, we can rewrite this constraint as follows:

rT q ≥ u−1(Gc − u(w − pT r)). (33)

According to the assumptions made in Ben-Haim (2013, p. 17), rT q is a realization of a
normal random variable with mean m(r) = rTµ and variance s2(r) = rTΣr > 0. We can
therefore standardize the constraint as follows:

−r
T q − rTµ
rTΣr

≤ rTµ− u−1(Gc − u(w − pT r))
rTΣr

(34)

observing that according to the above assumptions,

t(r, q) :=
rT q − rTµ
rTΣr

(35)

is the realization of a standard normal random variable, hence the probability function governing
the value of t(r, q) is independent of r. Therefore, by inspection

Probabilistic problem rT q ∼ N (rTµ, rTΣr) Deterministic equivalent

p∗ := max
r∈X

P
(
u(w − pT r) + u(rT q) ≥ Gc

)
h∗ := max

r∈X

rTµ− u−1(Gc − u(w − pT r))
rTΣr

(36)

where X = {r ∈ Rn : 0 ≤ pT r ≤ w, rj ≥ 0, j = 1, 2, . . . , n}.

Again, nothing to it!

What all this goes to show is that to make a case for the employment of info-gap’s robustness
model as a tool for maximizing the probability of survival, or success, one must answer the
following questions.
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2.4 Questions

· What justification could there possibly be for complicating the derivation of the deter-
ministic equivalents of probabilistic problems, such as those featured above, by foisting
on these probabilistic problems the additional constructs that are required by info-gap
decision theory, in order to cast them in terms of an info-gap robustness model (see section
4.1)?

· Indeed, what justification could there possibly be for turning to info-gap decision theory
in the first place, given that the deterministic equivalents are obtained immediately by
inspection from the performance constraint?

· Isn’t it clear as daylight that the simplicity of these examples sends a clear message that
the transformation of the constraint f(x,w) ≤ b into t(w) ≤ h(x) is possible only in highly
specialized cases?
And to illustrate, consider the seemingly simple constraint

(w − x)3 ≤ 100 (37)

where x and w are numeric scalars, representing the decision variable and the uncer-
tainty parameter, respectively. However simple this representation seems to be, there is
no obvious way to deduce from this constraint the t(w) ≤ h(x) format. Indeed, it is
doubtful that such a format exists for this case.

In the next section I examine a slightly different scheme for deriving deterministic equivalents
for probabilistic problems. This scheme provides further evidence that deterministic equivalents
can be derived only in highly specialized cases of the type discussed above.

3 A slightly different perspective

As I noted at the outset, the preceding analysis sought to demonstrate that the ability to
deduce deterministic equivalents hangs on the premise (well known fact) that P (Y ≤ c) is non-
decreasing with c. But to give a fuller picture of why the application of deterministic equivalents
is extremely limited in cases where P is completely unknown, it is instructive to explain this
fact in terms of another inherent property of probability measures, implied by the axioms of
probability theory (Feller 1968, Rozanov, 1977).

Let C and D denote two (non-empty) events (sets) associated with some probability space.
Then, as we all know,

C ⊆ D −→ P (C) ≤ P (D) (38)

where P (E) denotes the probability of event E.
The point to note then is that to be able to count on this inherent property of probability

measures, the two sets (events) we compare must be nested, namely at least one of these two
set must be a subset of the other. For, suppose that C and D are not nested. Then it would
follow that C \D and D \C are not empty. Therefore, if P is completely unknown, we cannot
discount the possibility that P (C \D) = 1, P (D) = 0 and therefore that P (C) > P (D). Nor
can we discount the possibility that P (D \C) = 1, P (C) = 0 and therefore that P (D) > P (C).
In short, in this case we are in no position to rule whether P (C) ≤ P (D) or P (D) ≤ P (C).

With this in mind, consider again the performance constraint f(x,w) ≤ b, and let A(x)
denote the set of acceptable values of w associated with decision x ∈ X, namely define

A(x) = {w ∈ Rn : f(x,w) ≤ b} , x ∈ X. (39)

This representation enables writing the constraint imposed on w by decision x as follows:

w ∈ A(x). (40)
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As usual, to simplify the notation, we shall write P (A(x)) instead of P (W ∈ A(x)), observing
that P (A(x)) = P (f(x,W ) ≤ b). So here is an obvious deterministic equivalent:

∀x′, x′′ ∈ X : A(x′) ⊆ A(x′′) −→ P (A(x′)) ≤ P (A(x′′)). (41)

This suggests the following.

Definition 2 Two sets, say C and D, are said to be nested iff either C ⊂ D, or D ⊂ C, or
C = D. A collection of sets is said to be nested iff every two sets in this collection are nested.

Definition 3 Let SIZE be a real-valued function on {A(x) : x ∈ X}. We say that SIZE is
a size function for {A(x) : x ∈ X} iff

∀x′, x′′ ∈ X : SIZE(A(x′)) < SIZE(A(x′′)) −→ A(x′) ⊂ A(x′′). (42)

Intuitively, the real number SIZE(A(x)) is viewed as the “size” of set A(x). For instance,
if the sets A(x), x ∈ X consist of finitely many elements, we can let SIZE(A(x)) = |A(x)|,
where |A(x)| denotes the cardinality of A(x). It follows then that

Theorem 3 Assume that the collection of sets A(x), x ∈ X is nested and that SIZE is a size
function for this collection. Then

∀x′, x′′ ∈ X : SIZE(A(x′)) < SIZE(A(x′′)) −→ P (A(x′)) ≤ P (A(x′′)). (43)

What we have then under these conditions is the following:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (A(x)) h∗ := max
x∈X

SIZE(A(x)) (44)

Corollary 1 Assume that the collection of sets A(x), x ∈ X is nested and that SIZE is a
size function for this collection. Then, any optimal solution to the deterministic equivalent in
(44) is also an optimal solution to the probabilistic problem in (44).

It should be noted that if P is completely unknown and for two decisions, say x′, x′′ ∈ X the
corresponding sets A(x′) and A(x′′) are not nested, then it would be impossible to determine
categorically whether P (A(x′)) < P (A(x′′) or P (A(x′)) > P (A(x′′), or P (A(x′)) = P (A(x′′).
In fact, if A(x′) and A(x′′) are not nested, it would be possible to construct two probability
measures, say P ′ and P ′′ such that P ′(A(x′)) < P ′(A(x′′) and P ′′(A(x′)) > P ′′(A(x′′). For
instance, set P ′(A(x′) \A(x′′)) = 1 and P ′′ (A(x′′) \A(x′)) = 1.

Thus, for the above scheme for deducing deterministic equivalents to work, the sets A(x), x ∈
X must be nested and there must be at least one decision x∗ ∈ X such that

A(x) ⊆ A(x∗) , ∀x ∈ X. (45)

These, needless to say, are extremely restrictive conditions.
To illustrate, consider the very simple, one might argue naive, case where w and x are

numeric scalars, f(x,w) = (w − x)2, and b = 100. The constraint f(x,w) ≤ b can therefore be
written as (w − x)2 ≤ 100, or equivalently as |w − x| ≤ 10. Thus,

A(x) = {w ∈ R : |w − x| ≤ 10} , x ∈ R (46)

= [x− 10, x+ 10]. (47)

Clearly, the sets A(x), x ∈ X are not nested.
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3.1 Some veritably trivial problems

Consider the case where w ∈ R, and that for every x ∈ X the value of f(x,w) is non-decreasing
with w. Also, assume that the values of

w(x) := max
w∈R

{w : f(x,w) ≤ b} , x ∈ X (48)

are attained.
Then, in this case we have

A(x) = (−∞, w(x)] , x ∈ X (49)

and therefore the sets A(x), x ∈ X are nested.
Furthermore, by inspection, the function SIZE defined by SIZE(A(x)] := w(x) is a size

function for the sets A(x), x ∈ X. So, for this simple case we have:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (A(x)) h∗ := max
x∈X

w(x)

= max
x∈X,w∈R

{w : f(x,w) ≤ b}
(50)

If on the other hand, f(x,w) is non-increasing with w, we would have

A(x) = [w(x),∞) , x ∈ X (51)

where

w(x) := min
w∈R
{w : f(x,w) ≤ b} , x ∈ X (52)

assuming that these values are attained.
Note that the sets A(x), x ∈ X are nested and that SIZE(A(x)) = −w(x) is a size function.

Hence:

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (A(x)) h∗ := min
x∈X

w(x)

= min
x∈X,w∈R

{w : f(x,w) ≤ b}
(53)

And along the same lines, assume that w ∈ Rn and that f(x,w) = F (x, g(w)) where g is
a real-valued function on Rn and F is a real-valued function on X × R. We can let v = g(w)
and write the constraint f(x,w) ≤ b as F (x, v) ≤ b, observing that v is a numeric scalar.
Thus, subject to the transformation v = g(w), we are back to the two simple cases examined
above, namely the case where the uncertainty parameter is a numeric scalar and the constraint
function is monotone with this parameter.

3.2 Examples of veritably trivial problems

Recall that the performance constraint associated with the foraging behavior problem discussed
in section 2.1 is as follows:

tg0 + (T − t)g1 ≥ Gc (54)

where the numeric scalar g1 is the uncertainty parameter, and t ∈ [0, T ) is the decision variable.
Clearly, for t ∈ [0, T ) the performance level tg0 + (T − t)g1 is strictly increasing with q1.

Hence, this problem falls squarely in the class of the veritably trivial cases discussed in the
preceding section.
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The same goes for the uncertain non-linear oscillator problem featured in section 2.2, where
the performance constraint is as follows:

|Xc(q)| − |Xr(c)| ≥ δ (55)

recalling that c represents the uncertainty parameter, and q denotes the decision variable.
By reformulating the uncertain parameter in terms of the scalar w = |Xr(c)|, we can write

the performance constraint as follows: |Xc(q)|−w ≥ δ. Clearly, the performance level |Xc(q)|−w
is strictly decreasing with w.

And the same is true for the risky assets problem in section 2.3, where the performance
constraints is as follows:

u(w − pT r) + u(rT q) ≥ Gc (56)

recalling that r ∈ Rn represents the decision variable, q ∈ Rn represents the uncertainty pa-
rameter, w and Gc are given numeric scalars, p is a given n-vector, and u is a strictly increasing
real-valued function on the real line.

By reformulating the uncertainty parameter in terms of the scalar v = rT q, we can write
the performance constraint as follows: u(w − pT r) + u(v) ≥ Gc. Clearly, the performance level
u(w − pT r) + u(v) is strictly increasing with u(v), and since u(v) is strictly increasing with v,
it follows that the performance level u(w − pT r) + u(v) is also strictly increasing with v.

3.3 Taking stock

The preceding analysis sought to demonstrate that, as can best be ascertained, it is hard to
see how deterministic equivalents can be deduced for maxx∈X P (f(x,W ) ≤ b) in cases where
the uncertainty parameter w is not a numeric scalar, or can be transformed into a numeric
scalar. But more than this, even in this simple case, it seems that the derivation of deterministic
equivalents is contingent on the performance level f(x,w) being monotone with w, in which
case the derivation would have been trivially obvious to begin with.

That said, the question is what would happen in the two dimensional case, namely where
w ∈ R2? Shouldn’t it be possible to construct non-trivial two dimensional cases?

Consider then the manifestly simple two dimensional case w ∈ R2, where

X = {x ∈ R2 : x1 + x2 = 1, x1, x2 ≥ 0} (57)

and the performance constraint is as follows:

x1w1 + w2x2 ≤ 20. (58)

In this case,

A(x) = {w ∈ R2 : x1w1 + w2x2 ≤ 20} , x ∈ X. (59)

By inspection, these sets are not nested. For instance, consider these three sets

A(1, 0) = {w ∈ R2 : w1 ≤ 20} = R× (−∞, 20] (60)

A(0, 1) = {w ∈ R2 : w2 ≤ 20} = (−∞, 20]× R (61)

A(0.5, 0.5) = {w ∈ R2 : w1 + w2 ≤ 10} (62)

Clearly, these sets are not nested.
And if this were not enough, then there is also the issue of formulating a size function. The

question is how to measure the size of the sets A(x), x ∈ X in this very simple case, considering
that these sets are half-spaces of R2 generated by the hyperplane x1w1 + w2x2 = 20 for given
values of x1 and x2.
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3.4 Conclusion

Practically based considerations, as well as methodologically based considerations, seem to sug-
gest that in cases where P is completely unknown, the scope of both the SIZE(A(x))) approach
and the P (t(w) ≤ h(x)) approach to deducing deterministic equivalents for the probabilistic
problem considered is limited in the extreme. Indeed, the requirement that the sets of accept-
able values of w, namely sets A(x), x ∈ X, be nested dictates drastic simplifications in the
performance constraint. So much so, that even if we assume that the uncertainty parameter w
is a scalar, we must assume on top of this that the performance levels f(x,w) are monotone
with w.

And the upshot of all this is that probabilistic problems of the “veritably trivial type” (such
as those examined in this section) seem to be the only type of problem that the SIZE(A(x)))
approach and/or the P (t(w) ≤ h(x)) approach can deal with.

4 A radius of stability perspective

The concept radius of stability (circa 1960) is used extensively in many fields to measure the
local robustness/stability of systems against small perturbations in the nominal value of a
parameter (e.g. Wilf 1960, Milne and Reynolds 1962, Hindrichsen and Pritchard 1986, 1986a,
Zlobec 1987, 1988, , Paice and Wirth 1998, Anderson et al. 2001, Cooper et al. 2004).

To explain this intuitive concept, let S(x) denote the set of acceptable states associated
with system/decision x ∈ X and let s̃ ∈ S(x) denote a nominal value of the state variable s.
Then, the radius of stability of set S(x) at s̃ is the radius (size) of the largest neighborhood
around the nominal state that is contained in the set. More formally then, the radius of stability
of system/decision x ∈ X at s̃ is as follows:

ρ̂(x, s̃) := max
ρ≥0
{ρ : s ∈ S(x), ∀s ∈ B(ρ, s̃)} , x ∈ X (63)

where B(ρ, s̃) denotes a neighborhood, or ball, of radius (size) ρ around s̃.
For example, in the case of the constraint f(x,w) ≤ b, we can view w as a state variable

and S(x) as the set of acceptable states associated with decision x. The radius of stability of
decision x at w̃ would therefore be as follows:

ρ̂(x, w̃) : = max
ρ≥0
{ρ : w ∈ S(x), ∀w ∈ B(ρ, w̃)} , x ∈ X (64)

= max
ρ≥0
{ρ : f(x,w) ≤ b,∀w ∈ B(ρ, w̃)}. (65)

In words, the radius of stability of decision x at w̃ is the radius ρ of the largest neighbourhood
B(ρ, w̃) around w̃ all of whose elements satisfy the performance constraint f(x,w) ≤ b.

This means that in order to use this model to determine the local robustness of decision x
at w̃ with respect to the performance constraint f(x,w) ≤ b, we have to specify two additional
constructs:

· The nominal value of w, namely w̃.

· A neighborhood structure B(ρ, w̃), ρ ≥ 0 around w̃.

The implication is then that the value of the radius of stability of decision x at w̃, namely
the value of ρ̂(x, w̃), is contingent on the value w̃ and the definition/specification of the neigh-
bourhoods B(ρ, w̃), ρ ≥ 0.

4.1 Info-gap proxy theorems

Info-gap decision theory (Ben-Haim 2001, 2006, 2010) uses radius of stability models of the
above type to define the robustness of decisions, and its robust-satisficing approach ranks de-
cisions according to the criterion that the larger the robustness the better. Hence, the optimal
robust-satisficing decision is that whose robustness (radius of stability) ρ̂(x, w̃) is the largest.
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Now, the contention that info-gap’s robust-satisficing approach enables maximizing the
probability of success without using probabilistic information is explained in the info-gap liter-
ature as being vouchsafed by what, in this literature, are called “proxy theorems” (Ben-Haim
2013). These are theorems that specify conditions under which the ranking of decisions accord-
ing to their radius of stability (info-gap robustness), is equivalent to their ranking according to
their probability to satisfy the performance constraint f(x,w) ≤ b.

In other words, these theorems stipulate conditions under which ρ̂(x, w̃) can be used as a
proxy for P (f(x,W ) ≤ b) for the purposes of ranking decisions according to their probability
of satisfying the performance constraint.

But the rub is that, as the probabilistic robustness P (f(x,W ) ≤ b) is inherently a measure
of global robustness, whereas radius of stability robustness ρ̂(x, w̃) is inherently a measure of
local robustness, it is crucial for info-gap’s proxy theorems to ensure that these two radically
different measures of robustness are “coherent” with each other.

To this end, info-gap’s proxy theorems posit some truly stringent conditions so that the
non-trivial robustness problems satisfying them are likely to be rare.

One of the most comprehensive examination of this topic can be found in Davidovitch
(2009) where a distinction is made between strong proxy theorems and weak proxy theorems.
Members of the strong class do not impose any requirements on the probability/likelihood
structure of the uncertainty space under consideration. So the task of “strong proxy theorems”
is to stipulate conditions guaranteeing that the decision selected by info-gap’s robustness model
maximizes the “probability of success”, regardless of the underlying (completely unknown)
probability/likelihood structure.

In contrast, the weak class imposes some “coherency” conditions on the probability/likelihood
structure. These conditions are designed to ensure that the probability/likelihood structure as-
sociated with the uncertainty space “mimic” the implicit “distance” function that is used in
info-gap’s model of uncertainty to create the neighborhoods B(ρ, w̃), ρ ≥ 0 around w̃.

It is important to take note that Davidovitch’s (2009) overall conclusion is that proxy
theorems are expected to be “very rare” (emphasis added):

We have shown that the definition of strong proxy theorems discussed by Ben-Haim
(2007), is very restrictive, and that when the uncertainty is multi-dimensional,
strong proxy theorems are expected to be very rare. Then we shall prove that even
this weaker definition does not hold for a wide family of common problems.

Davidovitch (2009, p. 137)

Since the technical issues are discussed in detail in Davidovitch (2009), I shall not elaborate
on them here.

However!

What I must point out here is that an important issue that is central to this entire enterprise
is not even broached in Davidovitch (2009), nor in Ben-Haim (2013). It is important therefore
to discuss it here in some detail.

If you keep in mind the fundamental difference between global and local stability/robustness,
you would no doubt expect that the conditions stipulated by info-gap’s proxy theorems (which
essentially aim to establish a tie between the two) would have to be exacting to a degree that
the structure of the performance constraint f(x,w) ≤ b is bound to become greatly simplified.
The question is therefore this:

· Given that the stringent requirements imposed by info-gap proxy theorems have the effect
of rendering the performance constrain f(x,w) ≤ b trivially simple, what is the merit,
the point, the advantage, of using info-gap’s robustness model as a deterministic equivalent
for the probabilistic robustness problem? More generally, what is the point, the merit,
the advantage of such proxy theorems say, vis-á-vis say theorems such as Theorem 2, that
stipulate a transformation of f(x,w) ≤ b into t(w) ≤ h(x)?
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More fundamentally, what is the point of foisting on the probabilistic robustness problem
maxx∈X P (f(x,W ) ≤ b) an arbitrary ad hoc neighborhood structure B(ρ, w̃), ρ ≥ 0 when
all that this manages to do is to complicate the derivation of deterministic equivalents?

To illustrate this important point, let us go back to the main example in Ben-Haim (2013),
namely the Foraging Behavior problem (section 2.1) featuring the following performance con-
straint

tg0 + (T − t)g1 ≥ Gc (66)

where t ∈ [0, T ) represent the decision variable, Gc and g0 are given numeric scalars, and g1 ≥ 0
represents the uncertainty parameter.

By inspection, the performance constraint can be written as follows:

g1 ≤
tg0 −Gc
T − t

. (67)

Let G1 denote the random variable governing the values of g1. Then, by inspection

Probabilistic problem Deterministic equivalent

p∗ := max
0≤t<T

P (tg0 + (T − t)G1 ≥ Gc) h∗ := max
0≤t<T

tg0 −Gc
T − t

(68)

The same deterministic equivalent is obtained by the SIZE(P (A(x))) approach, observing
that in this example the sets

A(t) =

{
g1 ∈ R : g1 ≤

tg0 −Gc
T − t

}
, 0 ≤ t < T (69)

=

(
−∞, tg0 −Gc

T − t

]
(70)

are nested, so that we can set

SIZE(A(t)) :=
tg0 −Gc
T − t

, 0 ≤ t < T. (71)

In sharp contrast, the deterministic equivalent proposed in Ben-Haim (2013) according to
the precepts of info-gap decision theory is the following:

ρ̂(g̃1) : = max
0≤t<T

ρ̂(x, g̃1) (72)

= max
0≤t<T

max
ρ≥0
{ρ : tg0 + (T − t)g1 ≥ Gc, ∀g1 ∈ B(ρ, g̃1)} (73)

where the nominal point g̃1 and the neighborhoods B(ρ, g̃1), ρ ≥ 0 are yet to be determined.
To repeat then: what merit can there possibly be in using info-gap’s sledgehammer approach

to deal with this problem?
Indeed, what merit can there possibly be in turning to info-gap decision theory to begin

with, considering that implementing it requires the specification of ad hoc values for g̃1 and
the neighborhoods B(ρ, g̃1), ρ ≥ 0, that in the end have no impact whatsoever on the results
generated by this deterministic equivalent?

The point I want to emphasise is that not only is this alternative deterministic equivalent
more complicated than those based on the P (Y ≤ h(x)) approach and the SIZE(P (A(x)))
approach. The truly important point here is that the radius of stability approach (i.e info-gap
decision theory’s approach) covers up the fact that the probabilistic robustness problem under
consideration is a problem of global robustness that has an obvious deterministic equivalent,
derived by inspection on grounds of a basic property of probability measures. This point is
completely obscured by the radius of stability approach adopted by info-gap decision theory.
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5 So what is the bottom line?

The bottom line is that in the framework of the SIZE(P (A(x))) approach and the P (t(w) ≤
h(x)) approach, the global probabilistic robustness problem is treated from the start as a
. . . global robustness problem and the derivation of the deterministic equivalents is transpar-
ently based on fundamental properties of probability measures. In sharp contrast, the radius
of stability approach (i.e. the approach adopted by info-gap decision theory) conceals from
view the role that fundamental properties of probability functions play in the derivation of
deterministic equivalents.

The point here is that these properties in fact are very much appealed to in the framework
of the radius of stability approach. The trouble is that this fact gets lost in the mass of
technical considerations that need to be reckoned with in order to reconcile the inherently
local orientation of the radius of stability model, with the inherently global orientation of the
probabilistic robustness problem under consideration.

This means that the statement (emphasis added):

We present three propositions, based on info-gap decision theory (Ben-Haim 2006),
that identify conditions under which the probability of success is maximised by an
agent who robustly satisfices the outcome without using probabilistic informa-
tion.

Ben-Haim (2013, p. 1)

is grossly misleading.
Because, to repeat, the deduction of the deterministic equivalents by means of info-gap

decision theory’s radius of stability approach, most definitely makes use of “probabilistic infor-
mation” through its implicit appeal to the fundamental properties of probability measures.

Let me clarify this important point.

Suppose that I assert that there is a decision x∗ ∈ X such that A(x) ⊆ A(x∗) for all x ∈ X.
Does this proposition count as “probabilistic information”? Similarly, suppose that I assert
that there is no x∗ ∈ X such that A(x) ⊆ A(x∗),∀x ∈ X. Does this proposition count as
“probabilistic information”?

Obviously, what I am driving at is that in an analysis of the values of P (A(x)), x ∈ X,
the proposition asserting that“there exists an x∗ ∈ X such that A(x) ⊆ A(x∗),∀x ∈ X”
imparts a crucially important piece of “probabilistic information” as it immediately implies that
P (A(x)) ≤ P (A(x∗)), ∀x ∈ X. Similarly, in the context of such an analysis, the proposition
asserting that “there exists no x∗ ∈ X such that A(x) ⊆ A(x∗), ∀x ∈ X” equally imparts a
crucially important piece of “probabilistic information” as it immediately implies that there
is no assurance that a deterministic equivalent exists for the probabilistic robustness problem
under consideration if P is indeed completely unknown.

And to amplify this point, in the context of an analysis of values of P (Y ≤ h(x)), x ∈ X,
the assertion that “there exists an x∗ ∈ X such that h(x) ≤ h(x∗),∀x ∈ X” is vitally important
“probabilistic information”. Indeed, the concept of “deterministic equivalents” itself is based
on “probabilistic information” such as this, and on “probabilistic information” pertaining to
fundamental properties of probability functions, such as:

a < b −→ P (Y ≤ a) ≤ P (Y ≤ b) (74)

C ⊂ D −→ P (C) ≤ P (D). (75)

The inference to be drawn then is that info-gap scholars would be well advised to reflect
on the implications of the above “probabilistic information” for the role of info-gap’s proxy
theorems in a global probabilistic robustness analysis. They would also do well to pinpoint
where such “probabilistic information” is appealed to, in the proofs of info-gap’s proxy theorems.
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6 Summary and conclusions

The idea of deriving deterministic equivalents for probabilistic problems on the strength of
fundamental properties of probability measures is long standing. Still, this idea is applicable
only in highly specialized cases, and in the case of the probability measures being completely
unknown, to trivial problems only.

In the case of probabilistic global robustness problems such as those considered in this
discussion, namely maxx∈X P (f(x,W ) ≤ b), where P is completely unknown, the derivation
of deterministic equivalents calls for significant simplifications in the performance constraint
f(x,w) ≤ b. Such simplifications effectively render the derivation process itself trivially sim-
ple. This means that the proposition to use radius of stability models to obtain deterministic
equivalents in such cases is nothing short of a “sledgehammer approach”.

It is akin to the proposition to solve the quadratic equation

(x− a)(x− b) = 0 (76)

by rewriting it as

x2 − (a+ b)x+ ab = 0 (77)

to then solve this equation by means of the“quadratic formula”

x =
(a+ b)±

√
(a+ b)2 − 4ab

2
(78)

to obtain the two solutions x1 = a, x2 = b, that can be obtained, by inspection, directly from
(76).

The main point one needs to appreciate about info-gap’s proxy theorems is the fundamen-
tal difficulty that they have to grapple with. This is the incongruity between the fact that the
probabilistic robustness problem maxx∈X P (f(x,W ) ≤ b) aims for global robustness, but as a
radius of stability model, info-gap’s robustness model seeks local robustness. So, the conditions
that the proxy theorems must therefore stipulate end simplifying the info-gap robustness prob-
lem to such an extent that its deterministic equivalent is trivially obvious. Namely, its local
robustness is a priori guaranteed to be global. This is so because these conditions either require
the sets A(x), x ∈ X to be nested, or they effectively require the probabilities P (A(x)), x ∈ X
to be monotone with the radii of stability of the decisions x ∈ X.

7 Epilogue

It is important to take note that each and every proposition in Ben-Haim (2013) figuring in
the illustrations of info-gap’s claimed ability to “maximize the probability of success without
using probabilistic information” imposes two essential conditions on the probabilistic problem
considered, namely on

Probabilistic Problem: p∗ := max
x∈X

P (f(x,W ) ≤ b). (79)

These two conditions are as follows:

· The uncertainty parameter w in the constraint f(x,w) ≤ b is a numeric scalar represent-
ing the realisation of the random variable W .

· The performance level f(x,w) is monotone with this parameter.

As we saw in this discussion (see section 3.1), these conditions simplify the problem consid-
ered to such an extent that the derivation of deterministic equivalents is immediately obvious.
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For, if w is a numeric scalar and for each x ∈ X the value of f(x,w) is say non-decreasing
with w, then by inspection, the constraint f(x,w) ≤ b is equivalent to the constraint w ≤ w(x)
where

w(x) := max
w∈R

{w : f(x,w) ≤ b} , x ∈ X (80)

assuming that the max is attained. If not, replace the max by sup, and if the level set {w :
f(x,w) ≤ b} is unbounded above, set w(x) =∞.

The implication is then that f(x,w) ≤ b is equivalent to w ≤ w(x), hence that P (f(x,w) ≤
b) = P (W ≤ w(x)). In short, we have:

Theorem 4 Assume that w is a numeric scalar and that for each x ∈ X the value of f(x,w)
in non-decreasing with w. Then,

Probabilistic problem Deterministic equivalent

p∗ := max
x∈X

P (f(x,W ) ≤ b) h∗ := max
x∈X

w(x)

= max
x∈X,w∈R

{w : f(x,w) ≤ b}
(81)

Namely, any optimal solution to the deterministic equivalent is also optimal with respect to the
probabilistic problem. Note that if w(x) =∞ for some x ∈ X, then P (f(x,W ) ≤ b) = 1 and x
is an optimal solution to both problems.

The implication is therefore that using the heavy guns of radius of stability models deployed
by info-gap decision theory for this purpose is totally unnecessary, indeed, farcical.

The trouble is that, as in previous discussions on info-gap’s claimed ability to maximize
the probability of success without using probabilistic information (e.g. Ben-Haim et al. 2009,
Ben-Haim and Cogan 2011, Ben-Haim (2012a), the hard facts about this claim lie submerged
in Ben-Haim (2013) under layers of rhetoric.

Hence the title of this article.
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